Advance Search
Guo Chun-Feng, Liu Ling, Tang Feng-Xue, Dai Hui-Fang, Liu Hai-Yan, Yang Jun-Wen. Remediation effects of common wetland plants on cadmium- and lead-polluted water environment[J]. Plant Science Journal, 2021, 39(5): 535-542. DOI: 10.11913/PSJ.2095-0837.2021.50535
Citation: Guo Chun-Feng, Liu Ling, Tang Feng-Xue, Dai Hui-Fang, Liu Hai-Yan, Yang Jun-Wen. Remediation effects of common wetland plants on cadmium- and lead-polluted water environment[J]. Plant Science Journal, 2021, 39(5): 535-542. DOI: 10.11913/PSJ.2095-0837.2021.50535

Remediation effects of common wetland plants on cadmium- and lead-polluted water environment

Funds: 

This work was supported by grants from the Major Projects of Science and Technology Agency of Anhui Province (18030701189) and Quality Engineering Projects of Education Department of Anhui Province (2019kfkc116).

More Information
  • Received Date: January 26, 2021
  • Revised Date: April 09, 2021
  • Available Online: October 31, 2022
  • Published Date: October 27, 2021
  • Four different concentrations of cadmium (Cd) and lead (Pb) were used to treat six common wetland plants, including Nasturtium officinale R. Br., Raphanus sativus L., Rorippa islandica (Oed.) Borb., Sinapis alba L., Oenanthe javanica (Blume) DC., and Ipomoea aquatica Forsk., under hydroponic culture. Results showed that root length and weight and dry plant weight in N. officinale and R. islandica were significantly lower than that in the control (CK) under both single and combined Cd and Pb stress (P < 0.05). Root length and dry plant weight in R. sativus and S. alba were higher than that in CK under Pb treatment. In the single Cd treatment group, the enrichment coefficients of the six plants were:N. officinale > R. islandica > O. javanica > R. sativus > I. aquatica > S. alba. However, the enrichment coefficient of N. officinale under Pb treatment was the smallest (0.013). The growth conditions of R. sativus seedlings under combined Cd and Pb stress did not differ significantly from that of CK, and showed increased transport coefficients, higher antioxidant enzyme activity, and lower root cell death, indicating that this species has good restorative potential.
  • [1]
    João PV, Artur JMV, Luisa D. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies:a review[J]. J Environ Manage, 2019, 246:101-118.
    [2]
    Kumar V, Parihar RD, Sharma A, Bakshi P, Singh Sidhu GP, et al. Global evaluation of heavy metal content in surface water bodies:a meta-analysis using heavy metal pollution indices and multivariate statistical analyses[J]. Chemosphere, 2019, 236:234-241.
    [3]
    Mohd NA, Sean GP, Sohaimi AM, Cheer NB, Fauzi IA. Adsorptive nanocomposite membranes for heavy metal remediation:recent progresses and challenges[J]. Chemosphere, 2019, 232:96-112.
    [4]
    Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, et al. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils:a review[J]. Ecotox Environ Safe, 2016, 126:111-121.
    [5]
    陈银萍, 柯昀琪, 杨志娟, 杨波, 闫志强, 等. 铅胁迫下三叶鬼针草内源一氧化氮的生成及其对氧化损伤的缓解效应[J]. 植物科学学报, 2018, 36(2):264-272.

    Chen YP, Ke YQ, Yang ZJ, Yang B, Yan ZQ, et al. Generation of endogenous NO and its ameliorating effects on oxidative damage in Bidens pilosa L. seedlings under Pb stress[J]. Plant Science Journal, 2018, 36(2):264-272.
    [6]
    Abreu CA, Coscione AR, Pires AM, Jorge PF. Phytoremediation of a soil contaminated by heavy metals and boron using castor oil plants and organic matter amendments[J]. J Geochem Explor, 2012, 123:3-7.
    [7]
    Jin ZM, Deng SQ, Wen YC, Jin YF, Pan L, et al. Application of simplicillium chinense for Cd and Pb biosorption and enhancing heavy metal phytoremediation of soils[J]. Sci Total Environ, 2019, 697:134-148.
    [8]
    Amina K, Safdar A, Muhammad F. Heavy metal phytoextraction potential of indigenous tree species of the family fabaceae[J]. Int J Phytoremediat, 2019, 21(3):251-258.
    [9]
    杨樱, 张世熔, 李婷, 姜洪敏, 陈红琳. 铜、铅在车前草中的亚细胞分配[J]. 环境科学学报, 2009, 29(9):1964-1969.

    Yang Y, Zhang SR, Li T, Jiang HM, Chen HL. Subcellular distributions of copper and lead in herba plantaginis[J]. Acta Scientiae Circumstantiae, 2009, 29(9):1964-1969.
    [10]
    Mani D, Kumar C. Biotechnological advances in bioremediation of heavy metals contaminated ecosystems:an overview with special reference to phytoremediation[J]. Int J Environ Sci Te, 2014, 11(3):843-872.
    [11]
    任珺, 陶玲, 杨倩, 余方可. 芦苇、菖蒲和水葱对水体中Cd富集能力的研究[J]. 农业环境科学学报, 2010, 29(9):1757-1762.

    Ren J, Tao L, Yang Q, Yu FK. Accumulation ability of Cd in water for Phragmites australis, Acorus calamus and Scirpus tabernaemontani[J]. Journal of Agro-Environment Science, 2010, 29(9):1757-1762.
    [12]
    李康, 李丹青, 张佳平, 夏宜平. 鸢尾属植物种子休眠研究进展[J]. 植物科学学报, 2016, 34(4):662-668.

    Li K, Li DQ, Zhang JP, Xia YP. Review on seed dormancy in iris[J]. Plant Science Journal, 2016, 34(4):662-668.
    [13]
    刁晓华,高亦珂. 四种鸢尾属植物种子休眠和萌发研究[J]. 种子, 2006, 25(4):41-44.

    Diao XH, Gao YK. Study on dormancy and germination of four iris species seeds[J]. Seed, 2006, 25(4):41-44.
    [14]
    刘少文, 焦如珍, 董玉红, 刘彩霞. 土壤重金属污染的生物修复研究进展[J]. 林业科学, 2017, 53(5):146-155.

    Liu SW, Jiao RZ, Dong YH, Liu CX. Research progress in bioremediation of heavy-metal contaminated soil[J]. Scientia Silvae Sinicae, 2017, 53(5):146-155.
    [15]
    Rascio N, Flavia NI. Heavy metal hyperaccumulating plants:how and why do they do it? And what makes them so interesting?[J]. Plant Sci, 2010, 180(2):169-181.
    [16]
    李晶, 栾亚宁, 孙向阳, 于海心, 祁娜, 等. 水生植物修复重金属污染水体研究进展[J]. 世界林业研究, 2015, 28(2):31-35.

    Li J, Luan YN, Sun XY, Yu HX, Qi N, et al. Research advances in remediation of heavy metal contaminated water bodies by aquatic plants[J]. World Forestry Research, 2015, 28(2):31-35.
    [17]
    Leandro K, Vanessa ZA, Goreti RVM, Márcia MS. The use of dried matrix spot for determination of Pb and Ni in automotive gasoline by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry[J]. Talanta, 2019, 205:105-120.
    [18]
    Wang CR, Liu HT, Chen JY, Tian Y, Shi J, et al. Carboxylated multi-walled carbon nanotubes aggravated biochemical and subcellular damages in leaves of broad bean (Vicia faba L.) seedlings under combined stress of lead and cadmium[J]. J Hazard Mater, 2014, 274:404-412.
    [19]
    Luna CM, Pastori GM, Driscoll S, Groten K, Bernard S, et al. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat[J]. J Exp Bot, 2005, 56(411):417-423.
    [20]
    田保华, 张彦洁, 张丽萍, 马晓丽, 金竹萍, 等. 镉/铬胁迫对谷子幼苗生长和NADPH氧化酶及抗氧化酶体系的影响[J]. 农业环境科学学报, 2016, 35(2):240-246.

    Tian BH, Zhang YJ, Zhang LP, Ma XL, Jin ZP, et al. Effects of cadmium or chromium on growth and NADPH oxidase and antioxidant enzyme system of foxtail millet seedlings[J]. Journal of Agro-Environment Science, 2016, 35(2):240-246.
    [21]
    蒋彧, 陶炼, 何俊蓉. 兰属春剑叶艺突变体叶片结构的研究[J]. 植物科学学报, 2018, 36(1):112-118.

    Jiang Y, Tao L, He JR. Structure of leaf variegation in Cymbidium tortisepalum Fukuy. var. longibracteatum[J]. Plant Science Journal, 2018, 36(1):112-118.
    [22]
    牛之欣, 孙丽娜, 孙铁珩. 水培条件下四种植物对Cd、Pb富集特征[J]. 生态学杂志, 2010, 29(2):261-268.

    Niu ZX, Sun LN, Sun TH. Enrichment characteristics of Cd and Pb by four kinds of plant under hydroponic culture[J]. Chinese Journal of Ecology, 2010, 29(2):261-268.
    [23]
    邹文桐. 铅镉复合胁迫对芥菜种子萌发、幼苗生长及光合色素含量的影响[J]. 种子, 2013, 32(3):41-45.

    Zou WT. Effects of combined lead and cadmium on seed germination, seedling growth and leaf photosynthetic pigment contents of Brassica juncea[J]. Seed, 2013, 32(3):41-45.
    [24]
    李富荣, 朱娜, 杨锐, 杜应琼, 王富华. 铅、镉单一及复合污染对11个空心菜品种种子萌发和幼苗生长效应的影响[J]. 热带作物学报, 2015, 36(11):1951-1958.

    Li FR, Zhu N, Yang R, Du YQ, Wang FH. Effects of simplex and combined Pb and Cd pollution on seed germination and seedling growth of eleven Ipomoea aquatica cultivars[J]. Chinese Journal of Tropical Crops, 2015, 36(11):1951-1958.
    [25]
    陈俊任, 柳丹, 吴家森, 李松, 晏闻博, 等. 重金属胁迫对毛竹种子萌发及其富集效应的影响[J]. 生态学报, 2014, 34(22):6501-6509.

    Chen JR, Liu D, Wu JS, Li S, Yan WB, et al. Seed germination and metal accumulation of moso bamboo (Phyllostachys pubescens) under heavy metal exposure[J]. Acta Ecologica Sinica, 2014, 34(22):6501-6509.
    [26]
    张义贤, 李晓科. 镉、铅及其复合污染对大麦幼苗部分生理指标的影响[J]. 植物研究, 2008, 28(1):43-46.

    Zhang YX, Li XK. Effects of Cd, Pb and their combined pollution on physiological indexes in leaf of the hordeum vulgare seedling[J]. Bulletin of Botanical Research, 2008, 28(1):43-46.
    [27]
    彭鸣, 王焕校, 吴玉树. 镉、铅在玉米幼苗中的积累和迁移-X射线显微分析[J]. 环境科学学报, 1989, 1:61-67.

    Peng M, Wang HX, Wu YS. Accumulation and transport of cadmium and lead in the seedlings of maize[J]. Acta Scientiae Circumstantiae, 1989, 1:61-67.
    [28]
    黄科文,林立金, 王均, 刘继, 刘磊, 等. 不同浓度褪黑素对豆瓣菜镉积累的影响[J]. 华北农学报, 2019, 34(4):140-147.

    Huang KW, Lin LJ, Wang J, Liu J, Liu L, et al. Effects of different concentrations of melatonin on cadmium accumulation of Nasturtium officinale[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(4):140-147.
    [29]
    仲灿, 葛晓敏, 倪云, 唐罗忠. 植物对土壤Cd、Pb污染的修复与抗性机理研究进展[J]. 世界林业研究, 2017, 30(1):37-43.

    Zhong C, Ge XM, Ni Y, Tang LZ. Research progress of phytore-mediation technology and resistance mechanism of plant in soil polluted by Cd or Pb[J]. World Forestry Research, 2017, 30(1):37-43.
    [30]
    杨刚, 伍钧, 唐亚. 铅胁迫下植物抗性机制的研究进展[J]. 生态学杂志, 2005, 12:1507-1512.

    Yang G, Wu J, Tang Y. Research advances in plant resistance mechanisms under lead stress[J]. Chinese Journal of Ecology, 2005, 12:1507-1512.
    [31]
    巴青松, 张根生, 马畅, 李桂萍, 宋运贤, 等. NO对镉胁迫下小麦根系生长发育的生理影响[J]. 植物科学学报, 2017, 35(3):398-405.

    Ba QS, Zhang GS, Ma C, Li GP, Song YX, et al. Physiological effects of nitric oxide on the growth and development of wheat roots under cadmium stress[J]. Plant Science Journal, 2017, 35(3):398-405.
    [32]
    娄腾雪, 吕素莲, 李银心. 盐角草在Cd、Pb、Li污染盐土修复中的应用潜力[J]. 生物工程学报,2020, 36(1):1-12.

    Lou TX, Lü SL, Li YX. Application potential of Salicornia europaea in remediation of Cd, Pb and Li contaminated saline soil[J]. Chinese Journal of Biotechnology, 2020, 36(1):1-12.
    [33]
    周玉卿,赵九洲,韩玉林. 铅、镉及其复合胁迫对黄菖蒲幼苗生长和生理抗性的影响[J]. 湿地科学,2012, 10(4):487-491.

    Zhou YQ, Zhao JZ, Han YL. Effects of lead, cadmium and their compound stress on growth and hardiness physiology of Iris pseudacorus seedling[J]. Wetland Science, 2012, 10(4):487-491.
  • Related Articles

    [1]Wang Yuqing, Zhou Shouhang, Ma Fulong, Wang Haizhen, Han Lu. Response of osmoregulatory substances and antioxidant enzyme activities in heteromorphic leaves of Populus euphratica Oliv. to groundwater depth[J]. Plant Science Journal, 2024, 42(2): 221-231. DOI: 10.11913/PSJ.2095-0837.23204
    [2]WANG Yan, GAO Peng, HUANG Min, CHEN Hao, YANG Zhi-Rong, SUN Qun. Effects of High Temperature on the Activity and Expression of Antioxidative Enzymes in Rice Flag Leaves during the Flowering Stage[J]. Plant Science Journal, 2015, 33(3): 355-361. DOI: 10.11913/PSJ.2095-0837.2015.30355
    [3]XIONG Bo, WANG Zhi-Hui, LIAO Feng-Ling, FAN Qian-Qian, LI Li-Jiao, WANG Xiao-Xiao. Effects of Calcium on the Activities of Three Antioxidant Enzymes in Huangguogan Fruit[J]. Plant Science Journal, 2014, 32(2): 168-173. DOI: 10.3724/SP.J.1142.2014.20168
    [4]SUN Xiao-Chun, YAN Gui-Qin. Comparisons of Antioxidant Activity of the Polysaccharide from Different Parts of Elaeagnus umbellata Thunb.[J]. Plant Science Journal, 2011, 29(6): 734-737.
    [5]CHEN Tao, WANG Gui-Mei, SHEN Wei-Wei, LI Xiao-Zhen, QI Jian-Min, XU Jian-Tang, TAO Ai-Fen, LIU Xiao-Qian. Effect of Salt Stress on the Growth and Antioxidant Enzyme Activity of Kenaf Seedlings[J]. Plant Science Journal, 2011, 1(4): 493-501.
    [6]QIU Zong-Bo, ZHU Feng-Rong, LI Jin-Ting, GUO Jun-Li. Effects of CO_2 Laser Pretreatment on Activities of Antioxidative Enzymes in Root of Wheat Seedlings under Water Stress[J]. Plant Science Journal, 2010, 28(1): 63-66.
    [7]MA Jian-Min, CAI Lin-Lin, JIN Tong-Xia, LI Xiao-Yu. Effects of 1-hexyl-3-methylimidazolium on Antioxidant Enzyme Activities and Lipid Peroxidation of Scenedesmus obliquus[J]. Plant Science Journal, 2008, 26(5): 509-513.
    [8]QIU Zong-Bo, LI Fang-Min, WANG Fang, YUE Ming. Effects of CO2 Laser on Glutathione-dependent Antioxidative System in Wheat Seedling under Drought Stress[J]. Plant Science Journal, 2008, 26(4): 402-406.
    [9]ZHANG Gai-Ping, YANG Jian-Xiong, ZHU Yu-An. Study on Antioxidant Activity of Lithospermum erythrorhizon in vitro[J]. Plant Science Journal, 2007, 25(5): 490-493.
    [10]HU Xiao-Hui, GUO Shi-Rong, LI Jing, WANG Su-Ping, JIA Yong-Xia. Effects of Hypoxia Stress on Anaerobic Respiratory Enzyme and Antioxidant Enzyme Activities in Roots of Cucumber Seedlings[J]. Plant Science Journal, 2005, 23(4): 337-341.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (505) PDF downloads (417) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return