Advance Search
Gong Xin-Yi, Ji Kang, Ye Lu-Ping, Zheng Yong, Wang Dang-Jun, Zuo Juan. Community characteristics of macro-and meso-soil fauna in alpine forest-shrub ecotones in central and western China[J]. Plant Science Journal, 2022, 40(2): 145-154. DOI: 10.11913/PSJ.2095-0837.2022.20145
Citation: Gong Xin-Yi, Ji Kang, Ye Lu-Ping, Zheng Yong, Wang Dang-Jun, Zuo Juan. Community characteristics of macro-and meso-soil fauna in alpine forest-shrub ecotones in central and western China[J]. Plant Science Journal, 2022, 40(2): 145-154. DOI: 10.11913/PSJ.2095-0837.2022.20145

Community characteristics of macro-and meso-soil fauna in alpine forest-shrub ecotones in central and western China

Funds: 

This work was supported by grants from the Research Initiation Project of Wuhan Botanical Garden, Chinese Academy of Sciences (Y9559701) and Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources (KF-2020-05-012).

More Information
  • Received Date: November 04, 2021
  • Revised Date: December 12, 2021
  • Available Online: October 31, 2022
  • Published Date: April 27, 2022
  • The alpine forest-shrub ecotone is an important transition region in the vegetation altitudinal spectrum. To investigate the characteristics of soil fauna communities under different vegetation types in alpine forest-shrub ecotones, the soil fauna communities in the Gongga, Taibai, and Shennongjia mountains were investigated. A total of 1099 soil fauna belonging to three phyla, nine classes, and 26 orders were captured. Results showed that under different vegetation types, total density of soil fauna did not differ significantly between the coniferous and shrub forests. Soil fauna in the coniferous and shrub forests showed certain similarities in community composition at the order level, but community composition at Gongga differed from that at Taibai and Shennongjia. The densities of Collembola, Insecta, Chilopoda, and Oligochaeta differed significantly among the three forest-shrub ecotones. Average density of Diplopoda in the Shennongjia shrub forest was significantly higher than that in the coniferous forest, but there were no differences between vegetation types in the other two sites for the other main groups. Thus, results showed that there were no differences in soil faunatotal density among the three ecotones, but there were certain differences in community composition.
  • [1]
    毓丛, 贺红士, 谷晓楠, 徐文茹, 刘凯, 等. 高山林线形成机理研究进展[J]. 应用生态学报, 2016, 27(9):3035-3041.

    Yu C, He HS, Gu XN, Xu WR, Liu K, et al. Progresses of alpine treeline formation mechanism[J]. Chinese Journal of Applied Ecology, 2016, 27(9):3035-3041.
    [2]
    Liu Y, Geng X, Tenzintarchen, Wei D, Dai D, et al. Divergence in ecosystem carbon fluxes and soil nitrogen cha-racteristics across alpine steppe, alpine meadow and alpine swamp ecosystems in a biome transition zone[J]. Sci Total Environ, 2020, 748:142453.
    [3]
    Sigdel SR, Wang Y, Camarero JJ, Zhu H, Liang E, et al. Moisture-mediated responsiveness of treeline shifts to global warming in the Himalayas[J]. Global Change Biol, 2018, 24(11):5549-5559.
    [4]
    Seastedt TR, Oldfather MF. Climate change, ecosystem processes and biological diversity responses in high elevation communities[J]. Climate, 2021, 9(5):1-16.
    [5]
    邓长春, 和润莲, 蒋先敏, 刘洋, 陈亚梅, 等. 高山林线交错带高山杜鹃的凋落物分解[J]. 生态学报, 2015, 35(6):1769-1778.

    Deng CC, He RL, Jiang XM, Liu Y, Chen YM,et al. Litter decomposition of Rhododendron lapponicum in alpine timberline ecotone[J]. Acta Ecologica Sinica,2015, 35(6):1769-1778.
    [6]
    苏越, 邬天媛, 张雪萍. 我国土壤动物环境指示功能研究进展[J]. 国土与自然环境研究, 2011, 6:64-67.

    Su Y, Wu TY, Zhang XP. Research advances in the indi-cative function soil fauna to environment in China[J]. Territory & Natural Resources Study, 2011, 6:64-67.
    [7]
    叶岳,姜玉霞, 陈华. 大型土壤动物功能类群对小生境环境因子的响应[J]. 江苏农业科学, 2019, 47(3):253-257.

    Ye Y, Jiang YX, Chen H. Responses of functional groups of large soil fauna to niche environmental factors[J]. Jiangsu Agricultural Sciences, 2019, 47(3):253-257.
    [8]
    De Deyn GB, Raaijmakers CE, Zoomer HR, Berg MP, de Ruiter PC,et al. Soil invertebrate fauna enhances grassland succession and diversity[J]. Nature, 2003, 422(6933):711-713.
    [9]
    Korboulewsky N, Perez G, Chauvat M. How tree diversity affects soil fauna diversity:a review[J]. Soil Biol Biochem, 2016, 94:94-106.
    [10]
    张秀娟, 勾影波, 杨晨利. 东洞庭湖环湖丘岗区土壤动物群落多样性研究[J]. 湖南理工学院学报(自然科学版), 2008, 21(1):10-14.

    Zhang XJ, Gou YB, Yang LC. Soil animal community diversity in the hilly areas around east Dongting lake[J]. Journal of Hunan Institute of Science and Technology (Natural Sciences), 2008, 21(1):10-14.
    [11]
    Yang X, Shao M, Li T, Gan M, Chen M. Community cha-racteristics and distribution patterns of soil fauna after vegetation restoration in the northern Loess Plateau[J].Ecol Indic, 2021, 122:107236.
    [12]
    Cavard X, Macdonald SE, Bergeron Y, Chen HYH. Importance of mixedwoods for biodiversity conservation:evidence for understory plants, songbirds, soil fauna, and ectomycorrhizae in northern forests[J]. Environ Rev, 2011, 19(1):142-161.
    [13]
    Hättenschwiler S, Tiunov AV, Scheu S. Biodiversity and litter decomposition in terrestrial ecosystems[J]. Annu Rev Ecol Evol Syst, 2005, 36:191-218.
    [14]
    Perry KI, Herms DA. Response of the forest floor invertebrate community to canopy gap formation caused by early stages of emerald ash borer-induced ash mortality[J]. For Ecol Manage, 2016, 375:259-267.
    [15]
    Bradford MA, Jones TH, Bardgett RD, Black HIJ, Boag B, et al. Impacts of soil faunal community composition on model grassland ecosystems[J]. Science, 2002, 298(5593):615-618.
    [16]
    Lu P, Dai N, Sun X, Zhang G, Xu D, et al. Composition and structure of soil fauna community in the Dexing Copper Mine tailings pool after revegetation[J]. Turkish J Zool, 2018, 42(3):307-315.
    [17]
    杨赵, 杨效东. 哀牢山不同类型亚热带森林地表凋落物及土壤节肢动物群落特征[J]. 应用生态学报, 2011, 22(11):3011-3020.

    Yang Z, Yang XD. Characteristics of floor litter and soil arthropod community in different types of subtropical forest in Ailao Mountain of Yunnan, Southwest China[J]. Chinese Journal of Applied Ecology, 2011, 22(11):3011-3020.
    [18]
    韩其晟. 太白山林线树种太白红杉外生菌根群落研究[D]. 杨凌:西北农林科技大学, 2017:16-18.
    [19]
    Ding J, Zhang Y, Deng Y, Cong J, Lu H, et al. Integra-ted metagenomics and network analysis of soil microbial community of the forest timberline[J]. Sci Rep, 2015, 5:7994.
    [20]
    Harsch MA, Hulme PE, McGlone MS, Duncan RP. Are treelines advancing? A global meta-analysis of treeline response to climate warming[J]. Ecol Lett, 2009, 12(10):1040-1049.
    [21]
    Lingua E, Cherubini P, Motta R, Nola P. Spatial structure along an altitudinal gradient in the Italian central Alps suggests competition and facilitation among coniferous species[J]. J Veg Sci, 2008, 19(3):425-436.
    [22]
    黄旭. 川西高山林草交错区土壤动物多样性研究[D]. 雅安:四川农业大学, 2010:16-34.
    [23]
    Panigrahy S, Anitha D, Kimothi MM, Singh SP. Timberline change detection using topographic map and satellite imagery:a critique[J]. Trop Ecol, 2010, 51(1):87-91.
    [24]
    舒树淼, 朱万泽, 冉飞, 孙守琴, 张元媛. 贡嘎山峨眉冷杉成熟林碳利用效率季节动态及其影响因子[J]. 植物生态学报, 2020, 44(11):1127-1137.

    Shu SM, Zhu WZ, Ran F, Sun SQ, Zhang YY. Season dynamics of carbon use efficiency and its influencing factors in the old-growth Abies fabri forest in Gongga Mountain, western Sichuan, China[J]. Chinese Journal of Plant Ecology, 2020, 44(11):1127-1137.
    [25]
    李萌, 吴鹏飞, 王永. 贡嘎山东坡典型植被类型土壤动物群落特征[J]. 生态学报, 2015, 35(7):2295-2307.

    Li M, Wu PF, Wang Y. Vertical distributions of soil fauna communities on the eastern slope of Gongga Mountain[J]. Acta Ecologica Sinica, 2015, 35(7):2295-2307.
    [26]
    陈昊轩, 刘欣蕊, 孙天雨, 王瑞丽, 张硕新. 太白山栎属树种叶片生态化学计量特征沿海拔梯度的变化规律[J]. 生态学报, 2021, 41(11):4503-4512.

    Chen HX, Liu RX, Sun TY, Wang RL, Zhang SX. Varition in leaf C:N:P stoichiometry of Quercus species along the altitudinal gradient in Taibai Mountain, China[J]. Acta Ecologica Sinica, 2021, 41(11):4503-4512.
    [27]
    盛玉钰, 丛静, 卢慧, 杨开华, 杨林森, 等. 神农架国家公园林线过渡带土壤真菌多样性[J]. 生态学报, 2018, 38(15):5322-5330.

    Sheng YY, Cong J, Lu H, Yang KH, Yang LS, et al. Soil fungal diversity of the timberline ecotone in Shennongjia National Park[J]. Acta Ecologica Sinica, 2018, 38(15):5322-5330.
    [28]
    胡琛, 贺云龙, 黄金莲, 雷静品, 崔鸿侠, 等. 神农架4 种典型针叶人工林土壤酶活性及其生态化学计量特征[J]. 林业科学研究, 2020, 33(4):143-150.

    Hu C, He YL, Huang JL, Lei JP, Cui HX, et al. Soil enzyme activity and its ecological stoichiometry in four typical coniferous planted forests in Shennongjia National Nature Reserve, China[J]. Forest Research, 2020, 33(4):143-150.
    [29]
    崔鸿侠, 潘磊, 庞宏东, 黄志霖, 曾立雄, 等. 神农架巴山冷杉林凋落物量养分归还及分解特征[J]. 南京林业大学学报(自然科学版), 2017, 41(1):194-198.

    Cui HX, Fan L, Pang HD, Huang ZL, Zeng LX, et al. Characteristics of litter Production dynamic and decomposition process of Abies fargesii forest in Shennongjia, Hubei Province[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(1):194-198.
    [30]
    尹文英. 中国土壤动物检索图鉴[M]. 北京:科学出版社, 1998:1-756.
    [31]
    Basset Y, Cizek L, Cuénoud P, Didham RK, Guilhaumon F, et al. Arthropod diversity in a tropical forest[J]. Science, 2012, 338(6113):1481-1484.
    [32]
    李志伟, 童晓立, 张维球, 谢国忠, 戴克元. 广东石门台自然保护区森林土壤无脊椎动物群落多样性[J]. 华南农业大学学报(自然科学版), 2004, 25(1):80-84.

    Li ZW, Tong XL, Zhang WQ, Xie GZ, Dai KY. Diversity of soil invertebrate assemblages in the forest of Shimentai Nature Reserve, Guangdong Province[J]. Journal of South China Agricultural University (Natural Science Edition), 2004, 25(1):80-84.
    [33]
    杨宝玲, 张文文, 范换, 王邵军, 阮宏华, 等. 苏北沿海地区不同土地利用类型下土壤动物群落结构特征[J]. 南京林业大学学报(自然科学版), 2017, 41(6):120-126.

    Yang BL, Zhang WW, Fan H, Wang SJ, Ruan HH, et al. Community structure of soil fauna under different land use types in the coastal area of northern Jiangsu Province[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(6):120-126.
    [34]
    胡艺, 李秋华, 李钥, 何应, 韩孟书, 等. 基于NMDS和RDA方法分析贵州百花水库后生浮游动物群落结构动态[J]. 环境科学研究, 2019, 32(9):1510-1518.

    Hu Y, Li QH, Li Y,He Y, Han MS, et al.Analysis of structure and dynamics of metazooplankton community in Baihua Reservoir of Guizhou Province based on NMDS and RDA[J]. Research of Environmental Sciences, 2019, 32(9):1510-1518.
    [35]
    殷秀琴, 蒋云峰, 陶岩, 安静超, 辛未冬. 长白山红松阔叶混交林土壤动物生态分布[J]. 地理科学, 2011, 31(8):935-940.

    Yin XQ, Jiang YF, Tao Y, An JC, Xin WD. Ecogeographical distribution of soil fauna in Pinus koraiensis mixed broad-leaved forest of Changbai Mountains[J]. Scientia Geographica Sinica, 2011, 31(8):935-940.
    [36]
    靳亚丽, 李必成, 耿龙, 卜云. 上海大金山岛不同植被类型下土壤动物群落多样性[J]. 生物多样性, 2017, 25(3):304-311.

    Jin YL, Li BC, Geng L, Bu Y. Soil fauna community in different natural vegetation types of Dajinshan Island, Shanghai[J]. Biodiversity Science, 2017, 25(3):304-311.
    [37]
    李伟, 崔丽娟, 赵欣胜, 张曼胤, 高常军, 等. 太湖岸带湿地土壤动物群落结构与多样性[J]. 生态学报, 2015, 35(4):944-955.

    Li W, Cui LJ, Zhao XS, Zhang MY, Gao CJ, et al. Community structure and diversity of soil animals in the Lake Taihu lakeshore wetland[J]. Acta Ecologica Sinica, 2015, 5(4):944-955.
    [38]
    Gastine A, Scherer-Lorenzen M, Leadley PW. No consis-tent effects of plant diversity on root biomass, soil biota and soil abiotic conditions in temperate grassland communities[J]. Appl Soil Ecol, 2003, 24(1):101-111.
    [39]
    Marian F, Ramírez Castillo P, IñiguezArmijos C, Günter S, Maraun M, et al. Conversion of Andean montane forests into plantations:effects on soil characteristics, microorganisms, and microarthropods[J]. Biotropica, 2020, 52(6):1142-1154.
    [40]
    Chen B, Wise DH. Bottom-up limitation of predaceous arthropods in a detritus-based terrestrial food web[J]. Ecology, 1999, 80(3):761-772.
    [41]
    Hooper DU, Bignell DE, Brown VK, Brussaard L, Dangerfield JM, et al. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems:patterns, mechanisms, and feedbacks[J]. Bioscience, 2000, 50(12):1049-1061.
    [42]
    肖能文, 刘向辉, 戈峰, 欧阳志云. 高黎贡山自然保护区大型土壤动物群落特征[J]. 生态学报, 2009, 29(7):3576-3584.

    Xiao NW, Liu XH, Geng F, Ouyang ZY. Research on soil faunal community composition and structure in the Gaoligong Mountains National Nature Reserve[J]. Acta Ecologica Sinica, 2009, 29(7):3576-3584.
    [43]
    刘家琰, 徐文婷, 谢宗强, 申国珍, 樊大勇, 等. 基于SPOT-VEGETATION数据的神农架林区1998-2013年植被覆盖度格局变化[J]. 生态学报, 2018, 38(11):3961-3969.

    Liu JY, Xiu WT, Xie ZQ, Shen GZ, Fan DY, et al. Dyna-mics and analysis of vegetation fraction changes in Shennongjia Forest District during 1998 to 2013 by using SPOT-VEGETATION NDVI data[J]. Acta Ecologica Sinica, 2018, 38(11):3961-3969.
    [44]
    田自强, 陈玥, 赵常明, 谢宗强, 陈伟烈. 中国神农架地区的植被制图及植物群落物种多样性[J]. 生态学报, 2004, 24(8):1611-1621.

    Tian ZQ, Chen Y, Zhao CM, Xie ZQ, Chen WL. Mapping of vegetation and analysis on its biodiversity in Shennongjia region, China[J]. Acta Ecologica Sinica, 2004, 24(8):1611-1621.
    [45]
    Hansen RA, Coleman DC. Litter complexity and composition are determinants of the diversity and species composition of oribatid mites(Acari:Oribatida)in litterbags[J]. Appl Soil Ecol, 1998, 9(1-3):17-23.
    [46]
    Wu T, Ayres E, Bardgett RD, Wall DH, Garey JR. Molecular study of worldwide distribution and diversity of soil animals[J]. Proc Natl Acad Sci USA, 2011, 108(43):17720-17725.
    [47]
    周育臻, 吴鹏飞. 贡嘎山东坡森林小型土壤节肢动物群落多样性与时空分布[J]. 生态学杂志, 2020, 39(2):586-599.

    Zhou YZ, Wu PF. Diversity and spatiotemporal distribution of soil microarthropod communities in forests on the eas-tern slope of Gongga Mountain[J]. Chinese Journal of Ecology, 2020, 39(2):586-599.
    [48]
    Buch AC, Sisinno CLS, Correia MEF, Silva-Filho EV. Food preference and ecotoxicological tests with millipedes in litter contaminated with mercury[J]. Sci Total Environ, 2018, 633:1173-1182.
    [49]
    Ashwini KM, Sridhar KR. Leaf litter preference and conversion by a saprophagous tropical pill millipede, Arthrosphaera magna Attems[J]. Pedobiologia, 2005, 49(4):307-316.
    [50]
    Ott D, Digel C, Klarner B, Maraun M, Pollierer M, et al. Litter elemental stoichiometry and biomass densities of forest soil invertebrates[J]. Oikos, 2014, 123(10):1212-1223.
  • Related Articles

    [1]Jia Xiande, Lü Haiying, Wu Limei, Yang Yinan, Huang Renhao, Wang Hao, Niu Xin. Response of leaf functional traits and anatomical structure to altitude in Crataegus songarica K. Koch in Tianshan wild fruit forest[J]. Plant Science Journal, 2024, 42(2): 150-159. DOI: 10.11913/PSJ.2095-0837.23157
    [2]Liu Xiong-Sheng, Xiao Yu-Fei, Wang Yong, Huang Rong-Lin, Jiang Ying, Liu Fei, Jiang Yi. Anatomical structures of vegetative organs of Keteleeria fortunei (Murr.)Carr.var. cyclolepis (Flous) Silba and its ecological adaptability[J]. Plant Science Journal, 2020, 38(1): 39-46. DOI: 10.11913/PSJ.2095-0837.2020.10039
    [3]Jiang Ya-Ting, Duan Guo-Min, Tian Min, Wang Cai-Xia, Zhang Ying. Anatomical structure of the vegetative organs of Calanthe tsoongiana and their ecological adaptation[J]. Plant Science Journal, 2019, 37(3): 271-279. DOI: 10.11913/PSJ.2095-0837.2019.30271
    [4]Liu Xiong-Sheng, Xiao Yu-Fei, Jiang Yi, Li Juan, Lin Jian-Yong, Liang Rui-Long. Anatomical structures of the vegetative organs of Phoebe bournei (Hemsl.) Yang and ecological adaptability[J]. Plant Science Journal, 2018, 36(2): 153-161. DOI: 10.11913/PSJ.2095-0837.2018.20153
    [5]Li Na, Guo Xue-Min, Li Ming, Bai Lan. Comparison of leaf anatomical structures between female and male Broussonetia papyrifera(L.) Vent.[J]. Plant Science Journal, 2017, 35(2): 164-170. DOI: 10.11913/PSJ.2095-0837.2017.20164
    [6]WU Yan-Fang, ZHANG Jian, LEI Jing, XU Feng, WU Li-Li. Anatomical Structure of Vegetative Organs of Ginkgo biloba L.[J]. Plant Science Journal, 2016, 34(2): 175-181. DOI: 10.11913/PSJ.2095-0837.2016.20175
    [7]SHEN Shi-Kang, ZHANG Xin-Jun, WU Fu-Qin, YANG Guan-Song, WANG Yue-Hua, SUN Wei-Bang, LIN Ru-Tao. Study on the Anatomical Structures of Rhododendron protistum var. giganteum with an Extremely Small Population[J]. Plant Science Journal, 2016, 34(1): 1-8. DOI: 10.11913/PSJ.2095-0837.2016.10001
    [8]YANG Zhi-Jian, FENG Jin-Ling, CHEN Hui. Study on the Anatomical Structures in Development of the Nurse Seed Grafted Union of Camellia oleifera[J]. Plant Science Journal, 2013, 31(3): 313-320. DOI: 10.3724/SP.J.1142.2013.30313
    [9]LU Chang, WANG Fang, ZHANG Xiao-Ping. Leaf Comparation on Anatomical Structure and Epidermal Characteristics of Pteroceltis tatarinowii Maxim. in Different Areas[J]. Plant Science Journal, 2012, 30(4): 337-351. DOI: 10.3724/SP.J.1142.2012.40337
    [10]TAO Yong, JIANG Ming-Xi. Study on Anatomical Structure Adaptation of Stem of Alternanthera philoxeroides (Mart.) Griseb to Various Water Condition[J]. Plant Science Journal, 2004, 22(1): 65-71.
  • Cited by

    Periodical cited type(10)

    1. 林协全,王宁,汪其双,陈春锦,刘锦航,邹双全,邹小兴. 福建金线莲的环境因子分析及生境适宜性评价. 山东农业大学学报(自然科学版). 2023(02): 201-207 .
    2. 林志强,马铁成. 新疆灌溉定额空间分布规律浅析. 水资源开发与管理. 2023(09): 69-74 .
    3. 艾拉努尔·卡哈尔,王鹏军,逯永满,袁祯燕,买买提明·苏来曼. 基于MaxEnt生态位模型预测木灵藓科三属植物在新疆的潜在分布区. 华中师范大学学报(自然科学版). 2022(03): 487-496+540 .
    4. 李雪,高广磊,孙桂丽,史浩伯,赵芳芳,马龙. 基于MaxEnt预测梭梭和白梭梭在新疆的潜在适生区. 西部林业科学. 2021(01): 145-152 .
    5. 祖丽米热·买买提依明,维尼拉·伊利哈尔,艾拉努尔·卡哈尔,吾热古丽·艾买提,买买提明·苏来曼,刘永英. 基于最大熵模型的真藓属植物在新疆的潜在分布预测. 森林工程. 2021(04): 1-10+21 .
    6. 古丽妮尕尔·穆太力普,夏尤普·玉苏甫,袁祯燕,买买提明·苏来曼. 阿尔金山国家级自然保护区的对齿藓属(Didymodon Hedw.)植物调查. 东北林业大学学报. 2020(01): 34-43 .
    7. 张梅,禄彩丽,魏喜喜,马珊,刘伟峰,宋健,彭瑞,李建贵. 基于MaxEnt模型新疆枣潜在适生区预测. 经济林研究. 2020(01): 152-161 .
    8. 周亚东,Mwangi Brian Njoroge,Ndungu John Mbari,王生位,胡光万,王青锋. 基于MaxEnt模型模拟肯尼亚茜草科河骨木属植物的潜在分布及其在植物志中的应用初探(英文). 植物科学学报. 2020(05): 636-643 . 本站查看
    9. 杨冬臣,王佳颖,李静,杨一洲,张金林. 基于Maxent生态位模型的外来入侵植物刺果瓜在我国的适生区预测. 河北农业大学学报. 2019(03): 45-50 .
    10. 赵儒楠,何倩倩,褚晓洁,鲁志强,祝遵凌. 气候变化下千金榆在我国潜在分布区预测. 应用生态学报. 2019(11): 3833-3843 .

    Other cited types(15)

Catalog

    Article views (365) PDF downloads (357) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return