Advance Search
Xu Ji-Lei, Wang Xing-Zhong, Fan Ji-Biao. Changes in physiology and photosynthesis of Glycine soja Sieb. et Zucc. induced by salt stress[J]. Plant Science Journal, 2022, 40(6): 829-838. DOI: 10.11913/PSJ.2095-0837.2022.60829
Citation: Xu Ji-Lei, Wang Xing-Zhong, Fan Ji-Biao. Changes in physiology and photosynthesis of Glycine soja Sieb. et Zucc. induced by salt stress[J]. Plant Science Journal, 2022, 40(6): 829-838. DOI: 10.11913/PSJ.2095-0837.2022.60829

Changes in physiology and photosynthesis of Glycine soja Sieb. et Zucc. induced by salt stress

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China (31720103905).

More Information
  • Received Date: May 30, 2022
  • Revised Date: July 05, 2022
  • Available Online: January 12, 2023
  • Annual vine Glycine soja Sieb. et Zucc. is considered the ancestor of cultivated soybean (G. max (L.)Merr.), but exhibits greater genetic diversity. At present, the G. soja growth environment is under high-salt stress, but its photosynthetic performance under such conditions remains unknown. In this study, we investigated the effects of salt stress on the photochemical activity of G. soja photosynthesis based on prompt chlorophyll fluorescence and modulated 820-nm reflection. Results showed that chlorophyll a content was significantly reduced, and the chlorophyll fluorescence induction transient (OJIP) curve was significantly changed in seedling leaves after salt stress treatment. The JIP-test parameters, including performance indices such as PIABS and PItotal and energy flux parameters such as RC/ABS, TRo/RC, ETo/RC, and REo/RC, were decreased, while DIo/RC was increased. Quantum yield and efficiency parameters, such as ψEo, φEo, δRo, and φRo, were decreased in seedling leaves exposed to salt stress. The shape of the MR/MRO ratio curve changed after salt stress treatment. Furthermore, changes in the MR/MRO ratio showed high correlation to the time intervals of chlorophyll fluorescence. Salt stress led to membrane lipid peroxidation in the seedling leaves, resulting in a significant increase in MDA content, while relative water content was significantly decreased. Thus, the seedling leaves adapted to salt stress by significantly increasing osmotic regulators and antioxidant enzyme activities.
  • [1]
    隋利, 易家宁, 王康才, 李羽青. 不同氮素形态及其配比对盐胁迫下紫苏生理特性的影响[J]. 生态学杂志, 2018, 37(11):3277-3283.

    Sui L, Yi JN, Wang KC, Li YQ. Effects of different forms and ratios of nitrogen on physiological characteristics of Perilla frutescens (L.) Britt under salt stress[J]. Chinese Journal of Ecology, 2018, 37(11):3277-3283.
    [2]
    祁伟亮, 孙万仓, 马骊. 活性氧参与调控植物生长发育和胁迫应激响应机理的研究进展[J]. 干旱地区农业研究, 2021, 39(3):69-81.

    Qi WL, Sun WC, Ma L. Research progress of reactive oxygen species involved in regulating plant growth and development and the mechanisms of stress response[J]. Agricultural Research in the Arid Areas, 2021, 39(3):69-81.
    [3]
    杜卓, 路运才. 玉米抗旱化学调控技术研究进展[J]. 中国农学通报, 2020, 36(33):7-11.

    Du Z, Lu YC. Chemical regulation technology of drought resistance in maize:a review[J]. Chinese Agricultural Science Bulletin, 2020, 36(33):7-11.
    [4]
    张利霞, 常青山, 侯小改, 刘伟, 李晓鹏, 等. NaCl胁迫对夏枯草幼苗抗氧化能力及光合特性的影响[J]. 草业学报, 2017, 26(11):167-175.

    Zhang LX, Chang QS, Hou XG, Liu W, Li XP, et al. Effects of NaCl stress on antioxidant capacity and photosynthetic characteristics of Prunella vulgaris seedlings[J]. Acta Prataculturae Sinica, 2017, 26(11):167-175.
    [5]
    Martinez V, Mestre TC, Rubio F, Girones-Vilaplana A, Moreno DA, et al. Accumulation of flavonols over hydroxycinnamic acids favors oxidative damage protection under abiotic stress[J]. Front Plant Sci, 2016, 7:838.
    [6]
    马婷, 滕玉瑾, 李翠祥, 杨颖丽. 盐胁迫下黄花补血草幼苗ROS代谢酶活性的变化[J]. 植物生理学报, 2016, 52(2):177-186.

    Ma T, Teng YJ, Li CX, Yang YL. Changes of ROS meta-bolizing enzyme activities in Limonium aureum seedlings under salinity stress[J]. Plant Physiology Journal, 2016, 52(2):177-186.
    [7]
    杨伟, 刘文辉, 马祥, 马晖玲. 干旱胁迫对2种不同抗旱性老芒麦幼苗ROS积累及抗氧化系统的影响[J]. 草地学报, 2020, 28(3):684-693.

    Yang W, Liu WH, Ma X, Ma HL. Effects of ROS accumulation and antioxidant system in two different drought resistant Elymus sibiricus under drought stress[J]. Acta Agrestia Sinica, 2020, 28(3):684-693.
    [8]
    Sofo A, Scopa A, Nuzzaci M, Vitti A. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses[J]. Int J Mol Sci, 2015, 16(6):13561-13578.
    [9]
    陈晓晶, 徐忠山, 赵宝平, 米俊珍, 严威凯, 刘景辉. 盐胁迫对燕麦根系呼吸代谢、抗氧化酶活性及产量的影响[J]. 生态学杂志, 2021, 40(9):2773-2782.

    Chen XJ, Xu ZS, Zhao BP, Mi JZ, Yan WK, Liu JH. Effects of salt stress on root respiratory metabolism, antioxidant enzyme activities, and yield of oats[J]. Chinese Journal of Ecology, 2021, 40(9):2773-2782.
    [10]
    Hasanuzzaman M, Nahar K, Hossain MS, Mahmud JA, Rahman A, et al. Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants[J]. Int J Mol Sci, 2017, 18(1):200.
    [11]
    Mehta P, Jajoo A, Mathur S, Bharti S. Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem Ⅱ in wheat leaves[J]. Plant Physiol Biochem, 2010, 48(1):16-20.
    [12]
    Porcel R, Redondo-Gómez S, Mateos-Naranjo E, Aroca R, Garcia R, Ruiz-Lozano JM. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of pho-tosystem Ⅱ and reduces non-photochemical quenching in rice plants subjected to salt stress[J]. J Plant Physiol, 2015, 185:75-83.
    [13]
    Schansker G, Tóth SZ, Strasser RJ. Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem Ⅰ in the Chl a fluorescence rise OJIP[J]. Biochim Biophys Acta, 2005, 1706(3):250-261.
    [14]
    Strasser RJ. The Fo and the O-J-I-P fluorescence rise in higher plants and algae[M]/Zhang WJ, Huang ZL, Wang Q, Guan YN. Effects of low temperature on leaf anatomy and photosynthetic perfor-mance in different genotypes of wheat following a rice crop[J]. Int J Agric Biol, 2015, 17(6):1165-1171.
    [15]
    Zhang WJ, Huang ZL, Wang Q, Guan YN. Effects of low temperature on leaf anatomy and photosynthetic perfor-mance in different genotypes of wheat following a rice crop[J]. Int J Agric Biol, 2015, 17(6):1165-1171.
    [16]
    Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V. Simu-ltaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis[J]. Biochim Biophys Acta, 2010, 1797(6-7):1313-1326.
    [17]
    Li P, Li PM, Ma FW, Goltsev V. Photosynthetic perfor-mance during leaf expansion in Malus micromalus probed by chlorophyll a fluorescence and modulated 820 nm reflection[J]. J Photochem Photobiol B, 2014, 137:144-150.
    [18]
    Fujita R, Ohara M, Okazaki K, Shimamoto Y. The extent of natural cross-pollination in wild soybean (Glycine soja)[J]. J Hered, 1997, 88(2):124-128.
    [19]
    Li YH, Li W, Zhang C, Yang L, Chang RZ, et al. Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism loci[J]. New Phytol, 2010, 188(1):242-253.
    [20]
    Jiao Y, Bai ZZ, Xu JY, Zhao ML, Khan Y, et al. Metabolomics and its physiological regulation process reveal the salt-tolerant mechanism in Glycine soja seedling roots[J]. Plant Physiol Biochem, 2018, 126:187-196.
    [21]
    Zhang JL, Wang JX, Jiang W, Liu J, Yang S, et al. Identification and analysis of NaHCO3 stress responsive genes in wild soybean (Glycine soja) roots by RNA-seq[J]. Front Plant Sci, 2016, 7:1842.
    [22]
    丁春霞, 周峰, 华春. 盐胁迫下植物光系统Ⅱ的光谱学和蛋白质亚基研究进展[J]. 天津农业科学, 2016, 22(5):5-7.

    Ding CX, Zhou F, Hua C. Advances in spectroscopy and protein subunits of photosystem Ⅱ in plant under salt stress[J]. Tianjin Agricultural Sciences, 2016, 22(5):5-7.
    [23]
    Hu ZR, Fan JB, Chen K, Amombo E, Chen L, Fu JM. Effects of ethylene on photosystem Ⅱ and antioxidant enzyme activity in Bermuda grass under low temperature[J]. Photosynth Res, 2016, 128(1):59-72.
    [24]
    Fan JB, Ren J, Zhu WX, Amombo E, Fu JM, Chen L. Antioxidant responses and gene expression in bermudagrass under cold stress[J]. J Amer Soc Hort Sci, 2015, 139(6):699-705.
    [25]
    汤章城. 现代植物生理学实验指南[M]. 北京:科学出版社, 1999:300-380.
    [26]
    滕志远, 张会慧, 代欣, 胡举伟, 张秀丽,等.干旱对桑树叶片光系统Ⅱ活性的影响[J]. 浙江农业学报,2016,28(1):1-8.

    Teng ZY, Zhang HH, Dai X, Hu JW, Zhang XL, et al. Effects of drought stress on PSⅡ photochemical activity in leaves of Morus alba[J]. Acta Agriculturae Zhejiangensis, 2016,28(1):1-8.
    [27]
    姬语潞, 杨维, 李涵, 曹桦, 陆琳, 等. 铁皮石斛叶色突变体的叶绿体超微结构、光合色素和叶绿素荧光特性的研究[J]. 植物科学学报, 2020, 38(2):260-268.

    Ji YL, Yang W, Li H, Cao H, Lu L, et al. Study on chloroplast ultrastructure, photosynthetic pigments, and chlorophyll fluorescence characteristics of leaf color mutants in Dendrobium officinale Kimura et Migo[J]. Plant Science Journal, 2020, 38(2):260-268.
    [28]
    孙云飞, 张文明, 巢建国, 谷巍, 陆奇杰. 盐胁迫对茅苍术叶绿素含量及叶绿素荧光参数的影响[J]. 江苏农业科学, 2020, 48(4):146-149.

    Sun YF, Zhang WM, Chao JG, Gu W, Lu QJ. Impacts of salt stress on chlorophyll contents and chlorophyll fluorescence parameters of Atractylodes lancea[J]. Jiangsu Agricultural Sciences,2020, 48(4):146-149.
    [29]
    Ohtsuka T, Ito H, Tanaka A. Conversion of chlorophyll b to chlorophyll a and the assembly of chlorophyll with apoproteins by isolated chloroplasts[J]. Plant Physiol, 1997, 113(1):137-147.
    [30]
    王玉萍, 郜春晓, 王盛祥, 何晓童. 低温弱光胁迫下芸豆叶片光抑制与类囊体膜脂构成变化[J]. 草业学报, 2020, 29(8):116-125.

    Wang YP, Gao CX, Wang SX, He XT. Changes in photoinhibition and fatty acid composition in the thylakoid membrane of kidney bean leaves under low temperature and weak light stress[J]. Acta Prataculturae Sinica, 2020, 29(8):116-125.
    [31]
    Guo YJ, Lu YP, Goltsev V, Strasser RJ, Kalaji HM, et al. Comparative effect of tenuazonic acid, diuron, bentazone, dibromothymoquinone and methyl viologen on the kinetics of Chl a fluorescence rise OJIP and the MR820 signal[J]. Plant Physiol Bioch, 2020, 156:39-48.
    [32]
    Strauss AJ, Krüger GHJ, Strasser RJ, van Heerden PDR. Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P[J]. Environ Exp Bot, 2006, 56(2):147-157.
    [33]
    刘晓洲, 郭浩轩, 卓定龙, 邓演文, 曾凤. 干旱复水对白姜花光合和叶绿素荧光参数的影响[J]. 中国农学通报, 2021, 37(34):84-89.

    Liu XZ, Guo HX, Zhuo DL, Deng YW, Zeng F. Effects of drought and rewatering on photosynthesis and chlorophyll fluorescence of Hedychium coronarium[J]. Chinese Agricultural Science Bulletin, 2021, 37(34):84-89.
    [34]
    张菂, 陈昌盛, 李鹏民, 马锋旺. 利用快速荧光、延迟荧光和820 nm光反射同步测量技术探讨干旱对平邑甜茶叶片光合机构的伤害机制[J]. 植物生理学报, 2013, 49(6):551-560.

    Zhang D, Chen CS, Li PM, Ma FW. Effects of drought on the photosynthetic apparatus in Malus hupehensis leaves explored by simultaneous measurement of prompt fluorescence, delayed fluorescence and modulated light reflection at 820 nm[J]. Plant Physiology Journal, 2013, 49(6):551-560.
    [35]
    孙文君, 江晓慧, 付媛媛, 申孝军, 高阳, 王兴鹏. 盐分胁迫对棉花幼苗叶片叶绿素荧光参数的影响[J]. 灌溉排水学报, 2021, 40(7):23-28.

    Sun WJ, Jiang XH, Fu YY, Shen XJ, Gao Y, Wang XP. The effects of salt stress on chlorophyll fluorescence of cotton seedling leaves[J]. Journal of Irrigation and Drai-nage, 2021, 40(7):23-28.
    [36]
    李利, 李宏. 干旱和盐胁迫对白榆叶片光系统Ⅱ活力的影响[J]. 东北林业大学学报, 2011, 39(9):31-33.

    Li L, Li H. Effects of NaCl and polyethylene glycol on photosystem Ⅱ activity in Ulmus pumila[J]. Journal of Nor-theast Forestry University, 2011, 39(9):31-33.
    [37]
    Sinha V, Pakshirajan K, Chaturvedi R. Chromium tole-rance, bioaccumulation and localization in plants:an overview[J]. J Environ Manage, 2018, 206:715-730.
    [38]
    Dąbrowski P, Kalaji MH, Baczewska AH, Paẃluskiewicz B, Mastalerczuk G, et al. Delayed chlorophyll a fluorescence, MR 820, and gas exchange changes in perennial ryegrass under salt stress[J]. J Lumines, 2018, 183:322-333.
    [39]
    El Sabagh A, Hossain A, Islam S, Barutcular C, Hussain S, et al. Drought and salinity stresses in barley:consequences and mitigation strategies[J]. Aust J Crop Sci, 2019, 13(6):810-820.
    [40]
    Huang S, Zuo T, Ni WZ. Important roles of glycinebetaine in stabilizing the structure and function of the photosystem Ⅱ complex under abiotic stresses[J]. Planta, 2020, 251(2):36.
  • Related Articles

    [1]Hou Fuxia, Cai Qianru, Zhao Suting, Fan Xiangrong, Zhu Hongyan, Yuan Longyi, Chen Yuanyuan. Comparison of the structure and photosynthetic characteristics of different photosynthetic organs in Trapa quadrispinosa Roxb.[J]. Plant Science Journal, 2024, 42(6): 782-790. DOI: 10.11913/PSJ.2095-0837.23392
    [2]Wei Lu-Ping, Zhou Qing-Ping, Chen You-Jun, Shao Yu-Qiao, Tian Hao-Qi, Wang Hui. Research progress on photosynthetic contribution of non-leaf green organs in plants[J]. Plant Science Journal, 2022, 40(2): 269-280. DOI: 10.11913/PSJ.2095-0837.2022.20269
    [3]WU Qiong-Fang, ZHANG Ying, LUO Shu-Huai, LI Ai-Fen, ZHANG Cheng-Wu. Effects of Nitrogen Limitation on Biochemical Composition and Photosynthetic Physiology during Lipid Accumulation in Chlorella vulgaris Beijierineck[J]. Plant Science Journal, 2016, 34(2): 280-288. DOI: 10.11913/PSJ.2095-0837.2016.20280
    [4]QIAN Lian-Wen, ZHANG Xin-Shi, YANG Zhi-Jie, HAN Zhi-Gang. Comparison of Different Light Response Models for Photosynthesis[J]. Plant Science Journal, 2009, 27(2): 197-203.
    [5]HE Ya-Ting, LIU Wen-Zhi, DANG Gao-Di, ZHANG Quan-Fa. Identification of the Photosynthetic Pathways of 30 Plant Species in the Subalpine Meadow of the Qinling Mountains,China[J]. Plant Science Journal, 2008, 26(3): 298-303.
    [6]LI Xiao-Long, GENG Ya-Hong, LI Ye-Guang, HU Hong-Jun. The Advantages in Competition Based on the Photosynthetic Characteristics of Microcystis aeruginosa[J]. Plant Science Journal, 2006, 24(3): 225-230.
    [7]FU Wei-Guo, LI Ping-Ping, CHEN Xin, BIAN Xin-Min, CHEN Dong-Mei. The Photosynthetic Characteristics of Phalaris arundimacea in the Beigu Mountain Wetland[J]. Plant Science Journal, 2005, 23(6): 555-559.
    [8]ZHAO Xue-Min, BI Yong-Hong, HU Zheng-Yu. Effects of Different Medium on the Growth and Photosynthetic Activity of Nostoc flagelliforme[J]. Plant Science Journal, 2005, 23(4): 332-336.
    [9]XIA Jian-Rong, GAO Kun-Shan. Studies on Photosynthetic Inorganic Carbon Utilization of Ulothrix sp.[J]. Plant Science Journal, 2002, 20(5): 399-402.
    [10]LIU Ying-Di, ZHU Jie-Ying, CHEN Jun, CAO Tong. Relationships of Water Content to Photosynthesis, Respiration and Water Potential in Three Species of Mosses[J]. Plant Science Journal, 2001, 19(2): 135-142.
  • Cited by

    Periodical cited type(9)

    1. 乔升,闫敏,蒙秋霞,张家星,罗渊,杨治平. 剩余污泥腐植酸的提取和对作物幼苗建成的影响. 农业环境科学学报. 2024(02): 426-433 .
    2. 陶文楷,郝明灼,刘佳琪,邹义萍,梁有旺. 金叶斯蒂芬冬青与原种斯蒂芬冬青耐盐性比较分析. 北方园艺. 2024(11): 49-55 .
    3. 沈年华,蒋思腾,顾翠花,杨丽媛,张国哲. 基于主成分分析和通径分析法对萼距花耐盐性的综合评价. 分子植物育种. 2024(14): 4692-4699 .
    4. 安琪乐,赵青,张思玉,张雪娇,李海波. 缺磷环境下黑磷纳米片对大豆生长性状的影响. 生态学杂志. 2024(09): 2777-2783 .
    5. 张学彪,倪忠,庄义庆. 外源海藻糖对NaCl胁迫下大豆幼苗的影响. 江苏农业科学. 2024(21): 116-122 .
    6. 蒋文鑫,马国辉,赵黎明,黄安琪,冯乃杰,郑殿峰,邹武龙. S-诱抗素对不同盐胁迫下水稻生理特性及产量的影响. 核农学报. 2023(12): 2485-2495 .
    7. 白苗,田雯青,武帅,王敏,王利祥,岳爱琴,牛景萍,张永坡,高春艳,张武霞,郭数进,杜维俊,赵晋忠. 激素和逆境胁迫对大豆维生素E和γ-TMT表达的影响. 生物技术通报. 2023(10): 148-162 .
    8. 谢佳旭,金华. 盐胁迫下5-氨基乙酰丙酸对农作物生长的作用. 黑龙江粮食. 2023(10): 85-87 .
    9. 王雪芸,李豫婷,乜怡暄,田永强,马斯. β-环柠檬醛对盐胁迫下黄瓜幼苗生长的影响. 中国蔬菜. 2023(12): 65-71 .

    Other cited types(26)

Catalog

    Article views (259) PDF downloads (49) Cited by(35)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return