Advance Search
Kang HW,Yue KJ,Liu HX,Wang JL,Tian XP. Effect of sex and leaf shape on gas exchange parameters and chlorophyll fluorescence characteristics in Sabina chinensis (L.) Ant[J]. Plant Science Journal,2024,42(6):791−799. DOI: 10.11913/PSJ.2095-0837.23391
Citation: Kang HW,Yue KJ,Liu HX,Wang JL,Tian XP. Effect of sex and leaf shape on gas exchange parameters and chlorophyll fluorescence characteristics in Sabina chinensis (L.) Ant[J]. Plant Science Journal,2024,42(6):791−799. DOI: 10.11913/PSJ.2095-0837.23391

Effect of sex and leaf shape on gas exchange parameters and chlorophyll fluorescence characteristics in Sabina chinensis (L.) Ant

More Information
  • Received Date: December 26, 2023
  • Accepted Date: March 12, 2024
  • This study investigated the effects of sex and leaf morphology on photosynthetic capacity, energy allocation, and dissipation in Sabina chinensis (L.) Ant. The experimental materials included prickly and scaly leaves from female, male, and monoecious plants. Gas exchange parameters, chlorophyll fluorescence characteristics, and non-structural carbohydrate (NSC) content were measured. Results showed that prickly leaves from both female and male plants exhibited significantly higher photosynthetic rate (Pn), the transpiration rate (Tr), the stomatal conductance (Gs), water use efficiency (WUE), and NSC compared to scaly leaves. Similarly, the non-photochemical quench (NPQ) and the ability of PSⅡ reaction center to trap energy from antenna pigment (1/Fo−1/Fm) were significantly higher in male and female prickly leaves, while maximum photochemical efficiency (Fv/Fm), the electron transfer rate (ETR), actual photochemical quantum efficiency (ФPSⅡ), photochemical quenching (qP), the highest maximum relative electron transfer rate (rETRmax), and half-saturated light intensity (Ik) were significantly lower in male and female prickly leaves compared to scaly leaves. Among sexes, female plants demonstrated significantly higher Pn, NSC, NPQ, and 1/Fo−1/Fm than male plants, while Fv/Fm, ETR, qP, rETRmax, and Ik were significantly lower in females. Correlation analysis showed a strong positive correlation between NSC and both Pn and 1/Fo−1/Fm, but a strong negative correlation between NSC and ETR. In conclusion, prickly leaves adapt to high-light environments by improving light energy capture ability and heat dissipation ability, whereas scaly leaves adapt to low-light environments by improving light energy utilization efficiency and light protection mechanisms. The coexistence of prickly and scaly leaves allows S. chinensis to meet the demands for photosynthate production and adapt to varying light conditions during growth and development. Female plants, through higher Pn, achieve greater NSC content, supporting the requirements for reproduction and growth.

  • [1]
    李理渊,李俊,同小娟,孟平,张劲松,张静茹. 黄河小浪底栓皮栎、刺槐叶片电子传递速率-光响应的模拟[J]. 植物生态学报,2018,42(10):1009−1021. doi: 10.17521/cjpe.2018.0063

    Li LY,Li J,Tong XJ,Meng P,Zhang JS,Zhang JR. Simulation on the light-response curves of electron transport rate of Quercus variabilis and Robinia pseudoacacia leaves in the Xiaolangdi area,China[J]. Chinese Journal of Plant Ecology,2018,42(10):1009−1021. doi: 10.17521/cjpe.2018.0063
    [2]
    王海珍,徐雅丽,代雅琦,韩路. 胡杨异形叶光合生理特性及其与叶形态的关系[J]. 塔里木大学学报,2020,32(3):35−43. doi: 10.3969/j.issn.1009-0568.2020.03.005

    Wang HZ,Xu YL,Dai YQ,Han L. The photosynthetic physiology characteristics of heteromorphic leaves and their relationship with leaf shape in Populus euphratica[J]. Journal of Tarim University,2020,32(3):35−43. doi: 10.3969/j.issn.1009-0568.2020.03.005
    [3]
    张金玲. 臭柏对光胁迫的生理生态响应研究[D]. 保定:河北农业大学,2020:1−122.
    [4]
    Hao JQ,Yue N,Zheng CX. Analysis of changes in anatomical characteristics and physiologic features of heteromorphic leaves in a desert tree,Populus euphratica[J]. Acta Physiol Plant,2017,39(8):160. doi: 10.1007/s11738-017-2467-9
    [5]
    刘建丽. 常绿乔木圆柏的繁殖技术[J]. 新疆林业,2021(4):20−21. doi: 10.3969/j.issn.1005-3522.2021.04.008
    [6]
    Tanaka-Oda A,Kenzo T,Kashimura S,Ninomiya I,Wang LH,et al. Physiological and morphological differences in the heterophylly of Sabina vulgaris Ant. in the semi-arid environment of Mu Us Desert,Inner Mongolia,China[J]. J Arid Environ,2010,74(1):43−48. doi: 10.1016/j.jaridenv.2009.07.013
    [7]
    Zhang JL,Xu XH,Li XG,Li YL,Guy RD,Chen HP. Photoprotection in heteromorphic leaves of savin juniper (Juniperus sabina L.)[J]. Photosynthetica,2019,57(3):780−787. doi: 10.32615/ps.2019.097
    [8]
    Zhang JL,Li XG,Xu XH,Chen HP,Li YL,Guy RD. Leaf morphology,photosynthesis and pigments change with age and light regime in savin juniper[J]. Plant Biol,2021,23(6):1097−1108. doi: 10.1111/plb.13256
    [9]
    王钰莹,魏梦瑶,焦梦晓,张奕蕾,邱念伟. 圆柏刺叶和鳞叶的光合功能比较[J]. 林业科技,2023,48(4):6−10,15.

    Wang YY,Wei MY,Jiao MX,Zhang YL,Qiu NW. Comparison of photosynthetic function between needle leaves and scale leaves of Sabina chinensis[J]. Forestry Science & Technology,2023,48(4):6−10,15.
    [10]
    Renner SS,Ricklefs RE. Dioecy and its correlates in the flowering plants[J]. Am J Bot,1995,82(5):596−606. doi: 10.1002/j.1537-2197.1995.tb11504.x
    [11]
    贺俊东,胥晓,郇慧慧,杨帅,秦芳. 青杨雌雄扦插苗光合作用日变化与叶绿素荧光参数特征[J]. 植物研究,2014,34(2):219−225.

    He JD,Xu X,Huan HH,Yang S,Qin F. Characteristics of chlorophyll fluorescent parameters and daily dynamics of photosynthesis in female and male Populus cathayana cutting seedlings[J]. Bulletin of Botanical Research,2014,34(2):219−225.
    [12]
    唐学玺. 环境胁迫下雌雄异株植物的差异响应特征及研究进展[J]. 中国海洋大学学报,2020,50(7):74−81.

    Tang XX. Characteristics and research progress of sex-specific responses to environmental stresses of dioecious plants[J]. Periodical of Ocean University of China,2020,50(7):74−81.
    [13]
    Zhang S,Chen LH,Duan BL,Korpelainen H,Li CY. Populus cathayana males exhibit more efficient protective mechanisms than females under drought stress[J]. For Ecol Manage,2012,275:68−78. doi: 10.1016/j.foreco.2012.03.014
    [14]
    Xu X,Peng GQ,Wu CC,Korpelainen H,Li CY. Drought inhibits photosynthetic capacity more in females than in males of Populus cathayana[J]. Tree Physiol,2008,28(11):1751−1759. doi: 10.1093/treephys/28.11.1751
    [15]
    Liu M,Liu XX,Kang JY,Korpelainen H,Li CY. Are males and females of Populus cathayana differentially sensitive to Cd stress?[J]. J Hazard Mater,2020,393:122411. doi: 10.1016/j.jhazmat.2020.122411
    [16]
    Liao J,Cai ZY,Song HF,Zhang S. Poplar males and willow females exhibit superior adaptation to nocturnal warming than the opposite sex[J]. Sci Total Environ,2020,717:137179. doi: 10.1016/j.scitotenv.2020.137179
    [17]
    Yang F,Wang Y,Wang J,Deng WQ,Liao L,Li M. Different eco-physiological responses between male and female Populus deltoides clones to waterlogging stress[J]. For Ecol Manage,2011,262(11):1963−1971. doi: 10.1016/j.foreco.2011.08.039
    [18]
    Li CY,Ren J,Luo JX,Lu RS. Sex-specific physiological and growth responses to water stress in Hippophae rhamnoides L. populations[J]. Acta Physiol Plant,2004,26(2):123−129. doi: 10.1007/s11738-004-0001-3
    [19]
    孙晓伟. 温带3种雌雄异株树种光合特征对比[D]. 哈尔滨:东北林业大学,2022:1−62.
    [20]
    Marshall JD,Dawson TE,Ehleringer JR. Gender-related differences in gas exchange are not related to host quality in the xylem-tapping mistletoe,Phoradendron juniperinum (Viscaceae)[J]. Am J Bot,1993,80(6):641−645. doi: 10.1002/j.1537-2197.1993.tb15234.x
    [21]
    Jones MH,MacDonald SE,Henry GHR. Sex-and habitat-specific responses of a high arctic willow,Salix arctica,to experimental climate change[J]. Oikos,1999,87(1):129−138. doi: 10.2307/3547004
    [22]
    Dawson TE,Ward JK,Ehleringer JR. Temporal scaling of physiological responses from gas exchange to tree rings:a gender-specific study of Acer negundo (Boxelder) growing under different conditions[J]. Funct Ecol,2004,18(2):212−222. doi: 10.1111/j.0269-8463.2004.00838.x
    [23]
    Letts MG,Phelan CA,Johnson DRE,Rood SB. Seasonal photosynthetic gas exchange and leaf reflectance characteristics of male and female cottonwoods in a riparian woodland[J]. Tree Physiol,2008,28(7):1037−1048. doi: 10.1093/treephys/28.7.1037
    [24]
    Tozawa M,Ueno N,Seiwa K. Compensatory mechanisms for reproductive costs in the dioecious tree Salix integra[J]. Botany,2009,87(3):315−323. doi: 10.1139/B08-125
    [25]
    马文宝,廖成云,姬慧娟,陈雪,董廷发. 濒危连香树种群性比和雌雄株功能性状的差异[J]. 生态学杂志,2019,38(8):2414−2419.

    Ma WB,Liao CY,Ji HJ,Chen X,Dong TF. Sex ratio and sexual difference of functional traits in the endangered plant Cercidiphyllum japonicum[J]. Chinese Journal of Ecology,2019,38(8):2414−2419.
    [26]
    黄云浩,辛本花,王娟. 雌雄异株植物鼠李生殖分配与生殖耗费补偿机制[J]. 北京林业大学学报,2019,41(11):31−36.

    Huang YH,Xin BH,Wang J. Reproductive allocation and compensation mechanism for reproductive costs of dioecious shrub Rhamnus davurica[J]. Journal of Beijing Forestry University,2019,41(11):31−36.
    [27]
    陈银萍. 圆柏属植物抗冷冻适应性机制研究[D]. 兰州:兰州大学,2006:1−90.
    [28]
    杨宗娟. 两种圆柏属植物叶片抗氧化系统对低温胁迫的响应机制研究[D]. 兰州:兰州交通大学,2013:1−69.
    [29]
    路通. 圆柏叶挥发性有机物动态变化研究[D]. 晋中:山西农业大学,2022:1−58.
    [30]
    宋晨慧,张有福,王梦可,王露露,陈春艳. 3种圆柏属植物叶片气孔特征对自然光强的响应[J]. 广东农业科学,2022,49(4):28−34.

    Song CH,Zhang YF,Wang MK,Wang LL,Chen CY. Response of leaf stomatal characteristics of three species of Juniperus to natural light intensity[J]. Guangdong Agricultural Sciences,2022,49(4):28−34.
    [31]
    韩兴华. 4种针叶树光合蒸腾特性的研究[D]. 呼和浩特:内蒙古农业大学,2007:1−39.
    [32]
    Ralph PJ,Gademann R. Rapid light curves:a powerful tool to assess photosynthetic activity[J]. Aquat Bot,2005,82(3):222−237. doi: 10.1016/j.aquabot.2005.02.006
    [33]
    冀宗琪. 蒙古栎非结构性碳水化合物在干旱胁迫中的调节作用[D]. 沈阳:沈阳农业大学,2022:1−60.
    [34]
    段娜,贾玉奎,郝玉光,徐军,高君亮,陈海玲. 干旱胁迫对欧李叶绿素荧光特性的影响[J]. 西北林学院学报,2018,33(6):10−14.

    Duan N,Jia YK,Hao YG,Xu J,Gao JL,Chen HL. Effects of drought stress on chlorophyll fluorescence characteristics of Cerasus humilis[J]. Journal of Northwest Forestry University,2018,33(6):10−14.
    [35]
    朱成刚,陈亚宁,李卫红,付爱红,杨玉海. 干旱胁迫对胡杨PSⅡ光化学效率和激能耗散的影响[J]. 植物学报,2011,46(4):413−424. doi: 10.3724/SP.J.1259.2011.00413

    Zhu CG,Chen YN,Li WH,Fu AH,Yang YH. Effect of drought stress on photochemical efficiency and dissipation of excited energy in photosystem Ⅱ of Populus euphratica[J]. Chinese Bulletin of Botany,2011,46(4):413−424. doi: 10.3724/SP.J.1259.2011.00413
    [36]
    Liu LT,Li AC,Chen J,Wang M,Zhang YJ,et al. iTRAQ-based quantitative proteomic analysis of cotton (Gossypium hirsutum L.) leaves reveals pathways associated throughout the aging process[J]. Acta Physiol Plant,2019,41(8):144. doi: 10.1007/s11738-019-2921-y
    [37]
    董高峰,陈贻竹,李耿光,黄涛,阳成伟. 阳生植物和阴生植物的叶黄素循环与非辐射能量耗散[J]. 武汉植物学研究,2001,19(2):128−134.

    Dong GF,Chen YZ,Li GG,Huang T,Yang CW. Xanthophyll cycle and non-radiative energy dissipation in sun and shade plants[J]. Journal of Wuhan Botanical Research,2001,19(2):128−134.
    [38]
    Lawson T,Blatt MR. Stomatal size,speed,and responsiveness impact on photosynthesis and water use efficiency[J]. Plant Physiol,2014,164(4):1556−1570. doi: 10.1104/pp.114.237107
    [39]
    张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报,1999,16(4):444−448.

    Zhang SR. A discussion on chlorophyll fluorescence kinetics parameters and their significance[J]. Chinese Bulletin of Botany,1999,16(4):444−448.
    [40]
    王海珍,韩路,徐雅丽,刘艳萍,王琳. 胡杨异形叶光合系统Ⅱ叶绿素荧光特性[J]. 西北植物学报,2019,39(10):1795−1804. doi: 10.7606/j.issn.1000-4025.2019.10.1795

    Wang HZ,Han L,Xu YL,Liu YP,Wang L. Chlorophyll fluorescence characteristics of photosystem Ⅱ of Populus euphratica heteromorphic leaves[J]. Acta Botanica Boreali-Occidentalia Sinica,2019,39(10):1795−1804. doi: 10.7606/j.issn.1000-4025.2019.10.1795
    [41]
    张瑞香. 不同林龄野生南方红豆杉碳氮磷生态化学计量与非结构性碳水化合物特征研究[D]. 郑州:河南农业大学,2023:1−52.
    [42]
    Quevedo-Rojas A,García-Núñez C,Jerez-Rico M,Jaimez R,Schwarzkopf T. Leaf acclimation strategies to contrasting light conditions in saplings of different shade tolerance in a tropical cloud forest[J]. Funct Plant Biol,2018,45(9):968−982. doi: 10.1071/FP17308
    [43]
    孙晓伟,王兴昌,孙慧珍,全先奎,杨青杰. 雌雄异株树种山杨、水曲柳和东北红豆杉光合特性对比[J]. 南京林业大学学报(自然科学版),2023,47(1):129−135.

    Sun XW,Wang XC,Sun HZ,Quan XK,Yang QJ. Photosynthetic characteristics of dioecious Populus davidiana,Fraxinus mandshurica and Taxus cuspidata[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2023,47(1):129−135.
  • Related Articles

    [1]Li Yu-Fei, Li Xian-Kun, Guo Yi-Li, Li Dong-Xing, Wang Bin, Xiang Wu-Sheng, Huang Fu-Zhao, Wen Shu-Jun, Li Jian-xing, Lu Shu-Hua, Liu Sheng-Yuan. Analysis of tree mortality characteristics in a dynamic northern tropical karst seasonal rainforest in Nonggang, Guangxi, southern China[J]. Plant Science Journal, 2022, 40(2): 177-186. DOI: 10.11913/PSJ.2095-0837.2022.20177
    [2]Zhu Hong, Lin Hai-Jiao, Yang Le, Li He-Peng, Yue Chun-Lei, Jiang Bo. Geographical distribution pattern and environmental explanation of Kandelia obovata Sheue, H.Y. Liu & J. Yong populations along the Southeast coast of China[J]. Plant Science Journal, 2021, 39(5): 476-487. DOI: 10.11913/PSJ.2095-0837.2021.50476
    [3]Weng Wen-Chang, Ge Ji-Wen, Chen Jia-Wei, Li Yong-Fu, Cheng La-Mei, Zhang Zhi-Qi. Water vapor flux characteristics and their relationship with environmental factors in the subalpine peat wetlands of Dajiuhu, Shennongjia[J]. Plant Science Journal, 2020, 38(4): 493-505. DOI: 10.11913/PSJ.2095-0837.2020.40493
    [4]Fan Miao, Wu Yu-Peng, Hu Rong-Gui, Jiang Yan-Bin. Diversity and distribution of bryophytes and their relationship with environmental factors in Wuhan[J]. Plant Science Journal, 2017, 35(6): 825-834. DOI: 10.11913/PSJ.2095-0837.2017.60825
    [5]Huang Zhi-Hao, Zhou Xin, Zhang Xiao-Ran, Pu Zhen, Xing Shao-Hua. Relationship between the distribution of Phellodendron amurense and environmental factors in the Beijing area[J]. Plant Science Journal, 2017, 35(1): 56-63. DOI: 10.11913/PSJ.2095-0837.2017.10056
    [6]PENG Xin-An, DING Yi, ZHANG Dan, DU Kui, XU Yan, WEN Xiao-Bin, GENG Ya-Hong, LI Ye-Guang. Effects of Environmental Factors on Infectivity of a Pathogenic Fungus Amoeboaphelidium sp. Infecting Microalgal Cells[J]. Plant Science Journal, 2016, 34(5): 798-806. DOI: 10.11913/PSJ.2095-0837.2016.50798
    [7]WU Lu-Lu, JI Meng-Cheng, YAN Xiong-Liang. Study on the Relationships between Terrestrial Bryophytes and Environmental Factors in Yangjifeng Nature Reserve,China[J]. Plant Science Journal, 2010, 28(3): 324-329. DOI: 10.3724/SP.J.1142.2010.30324
    [8]LIU Xin-Chao, SHAO Xiao-Ming, JIANG Yan-Bin, SUN Yu, HU Wei-Yi<B></B>. Relationship between Bryophytes Distribution and Environmental Factors in Urban Beijing[J]. Plant Science Journal, 2010, 28(2): 171-178. DOI: 10.3724/SP.J.1142.2010.20171
    [9]MO Ya-Ying, GUO Shui-Liang. On Saxicolous Moss Species and Their Relationships with Environmental Factors Based on Ordination Analysis in Beishan, Jinhua, Zhejiang Province[J]. Plant Science Journal, 2006, 24(6): 525-530.
    [10]XIE Xiao Wei, GUO Shui Liang, HUANG Hua. A Study of the Relationships between Terrestrial Bryophytes and Their Environmental Factors in Jinhua City, Zhejiang[J]. Plant Science Journal, 2003, 21(2): 129-136.

Catalog

    Article views (56) PDF downloads (6) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return