Advance Search
Wang Q,Dong P,Liu M,Wu L,Xing W. Research progress on the application of duckweed as a receptor material in heavy metal (metalloid) pollution monitoring[J]. Plant Science Journal,2024,42(6):815−824. DOI: 10.11913/PSJ.2095-0837.24017
Citation: Wang Q,Dong P,Liu M,Wu L,Xing W. Research progress on the application of duckweed as a receptor material in heavy metal (metalloid) pollution monitoring[J]. Plant Science Journal,2024,42(6):815−824. DOI: 10.11913/PSJ.2095-0837.24017

Research progress on the application of duckweed as a receptor material in heavy metal (metalloid) pollution monitoring

More Information
  • Received Date: January 18, 2024
  • Accepted Date: February 29, 2024
  • Heavy metal (metalloid) pollution in aquatic systems is a critical global environmental concern, threatening the stability of aquatic ecosystems and posing severe risks to human health. Current engineering approaches for treating heavy metal (metalloid) pollution in wastewater are hindered by low efficiency, high costs, prolonged treatment times, and the potential to cause secondary pollution, further exacerbating ecosystem degradation. Consequently, the development of efficient, cost-effective, and environmentally sustainable solutions has become a priority. Furthermore, heavy metal (metalloid) contamination imposes immense pressure on freshwater ecosystems, underscoring the urgent need for efficient monitoring tools and scientific methods for evaluating their toxicity. Duckweed, a term encompassing various genera within the family Lemnaceae, including Lemna, Spirodela, and Wolffia, has emerged as a promising model plant in freshwater ecological research. Its rapid growth, ease of cultivation under controlled conditions, and sensitivity to environmental changes make it an ideal candidate for both early detection and subsequent remediation of heavy metal (metalloid) pollution. This review consolidates two decades of research on the application of duckweed as a bioindicator and remediation agent for heavy metal pollution in aquatic ecosystems. We summarize its response mechanisms and applications across molecular, cellular, and individual levels, providing insights into existing challenges and future development trends. This review aims to provide a theoretical framework for its strategic and effective application in monitoring and mitigating heavy metal (metalloid) pollution in freshwater ecosystems.

  • [1]
    Vareda JP,Valente AJM,Durães L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies:a review[J]. J Environ Manage,2019,246:101−118. doi: 10.1016/j.jenvman.2019.05.126
    [2]
    Sharma R,Lenaghan SC. Duckweed:a potential phytosensor for heavy metals[J]. Plant Cell Rep,2022,41(12):2231−2243. doi: 10.1007/s00299-022-02913-7
    [3]
    Kiskira K,Papirio S,Fourdrin C,van Hullebusch ED,Esposito G. Effect of Cu,Ni and Zn on Fe(Ⅱ)-driven autotrophic denitrification[J]. J Environ Manage,2018,218:209−219. doi: 10.1016/j.jenvman.2018.04.050
    [4]
    Ali S,Abbas Z,Rizwan M,Zaheer IE,Yavaş İ,et al. Application of floating aquatic plants in phytoremediation of heavy metals polluted water:a review[J]. Sustainability,2020,12(5):1927. doi: 10.3390/su12051927
    [5]
    Farooqi ZUR,Hussain MM,Ayub MA,Qadir AA,Ilic P. Potentially toxic elements and phytoremediation:opportunities and challenges[M]//Bhat RA,Tonelli FMP,Dar GH,Hakeem K,eds. Phytoremediation:Biotechnological Strategies for Promoting Invigorating Environs. London:Academic Press,2022:19−36.
    [6]
    Ali MM,Hossain D,Al-Imran,Khan S,Begum M, et al. Environmental pollution with heavy metals:a public health concern[M]//Nazal MK,Zhao HB,eds. Heavy Metals-Their Environmental Impacts and Mitigation. Rijeka:IntechOpen,2021:771−783.
    [7]
    Aziz KHH,Mustafa FS,Omer KM,Hama S,Hamarawf RF,Rahman KO. Heavy metal pollution in the aquatic environment:efficient and low-cost removal approaches to eliminate their toxicity:a review[J]. RSC Adv,2023,13(26):17595−17610. doi: 10.1039/D3RA00723E
    [8]
    Begum A,Harikrishna S. Bioaccumulation of trace metals by aquatic plants[J]. Int J ChemTech Res,2010,2(1):250−254.
    [9]
    Ogundola AF,Adebayo EA,Ajao SO. Phytoremediation:the ultimate technique for reinstating soil contaminated with heavy metals and other pollutants[M]//Kumar V,Shah MP,Shahi SK,eds. Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water. Amsterdam:Elsevier,2022:19−49.
    [10]
    Prasad J,Tiwari S,Singh BK,Dubey NK. Phytoextraction of heavy metals:challenges and opportunities[M]//Kumar V,Shah MP,Shahi SK,eds. Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water. Amsterdam:Elsevier,2022:173−187.
    [11]
    Singh S,Kumar V,Dhanjal DS,Parihar P,Ramamurthy PC,Singh J. Phytoremediation of heavy metals,metalloids,and radionuclides:prospects and challenges[M]//Kumar V,Shah MP,Shahi SK,eds. Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water. Amsterdam:Elsevier,2022:253−276.
    [12]
    Töre GY,Özkoç ÖB. Recent developments in aquatic macrophytes for environmental pollution control:a case study on heavy metal removal from lake water and agricultural return wastewater with the use of duckweed (Lemnacea)[M]//Kumar V,Shah MP,Shahi SK,eds. Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water. Amsterdam:Elsevier,2022:75−127.
    [13]
    史永富,詹倩云,张龙飞,王梦圆,叶洪丽,等. 植物修复中代表性浮水植物移除重金属的能力和特性比较[J]. 生态毒理学报,2022,17(3):316−325. doi: 10.7524/AJE.1673-5897.20210611002

    Shi YF,Zhan QY,Zhang LF,Wang MY,Ye HL,et al. Comparison of ability and characteristics of representative floating water plants to remove heavy metals in phytoremediation[J]. Asian Journal of Ecotoxicology,2022,17(3):316−325. doi: 10.7524/AJE.1673-5897.20210611002
    [14]
    Rezania S,Taib SM,Din MFM,Dahalan FA,Kamyab H. Comprehensive review on phytotechnology:heavy metals removal by diverse aquatic plants species from wastewater[J]. J Hazard Mater,2016,318:587−599. doi: 10.1016/j.jhazmat.2016.07.053
    [15]
    Xing W,Wu HP,Hao BB,Huang WM,Liu GH. Bioaccumulation of heavy metals by submerged macrophytes:looking for hyperaccumulators in eutrophic lakes[J]. Environ Sci Technol,2013,47(9):4695−4703. doi: 10.1021/es303923w
    [16]
    Xing W,Huang WM,Liu GH. Effect of excess iron and copper on physiology of aquatic plant Spirodela polyrrhiza (L.) Schleid[J]. Environ Toxicol,2010,25(2):103−112. doi: 10.1002/tox.20480
    [17]
    De Alkimin GD,Santos J,Soares AMVM,Nunes B. Ecotoxicological effects of the azole antifungal agent clotrimazole on the macrophyte species Lemna minor and Lemna gibba[J]. Comp Biochem Physiol Part C Toxicol Pharmacol,2020,237:108835. doi: 10.1016/j.cbpc.2020.108835
    [18]
    Ziegler P,Sree KS,Appenroth KJ. Duckweeds for water remediation and toxicity testing[J]. Toxicol Environ Chem,2016,98(10):1127−1154. doi: 10.1080/02772248.2015.1094701
    [19]
    杨晶晶,赵旭耀,李高洁,胡诗琦,陈艳,等. 浮萍的研究及应用[J]. 科学通报,2021,66(9):1026−1045. doi: 10.1360/TB-2020-0927

    Yang JJ,Zhao XY,Li GJ,Hu SQ,Chen Y,et al. Research and application in duckweeds:a review[J]. Chinese Science Bulletin,2021,66(9):1026−1045. doi: 10.1360/TB-2020-0927
    [20]
    吴颖琳,杨愿愿,熊倩,王犇,刘芳,应光国. 浮萍在水体污染修复中的应用研究进展[J]. 生态毒理学报,2022,17(2):74−85.

    Wu YL,Yang YY,Xiong Q,Wang B,Liu F,Ying GG. Research advances on application of duckweed in bioremediation of polluted water[J]. Asian Journal of Ecotoxicology,2022,17(2):74−85.
    [21]
    王兴利,吴晓晨,王晨野,穆晓东,王晶博,等. 水生植物生态修复重金属污染水体研究进展[J]. 环境污染与防治,2020,42(1):107−112.

    Wang XL,Wu XC,Wang CY,Mu XD,Wang JB,et al. Research progress on ecological remediation of heavy metal polluted water by aquatic plants[J]. Environmental Pollution and Control,2020,42(1):107−112.
    [22]
    梁睿. 浮萍对外源无机硒的富集及其蛋白结合形态研究[D]. 南昌:南昌大学,2023:1−10.
    [23]
    Mechora Š,Stibilj V,Germ M. Response of duckweed to various concentrations of selenite[J]. Environ Sci Pollut Res Int,2015,22(4):2416−2422. doi: 10.1007/s11356-014-3270-4
    [24]
    Chen DQ,Zhang H,Wang QL,Shao M,Li XY,et al. Intraspecific variations in cadmium tolerance and phytoaccumulation in giant duckweed (Spirodela polyrhiza)[J]. J Hazard Mater,2020,395:122672. doi: 10.1016/j.jhazmat.2020.122672
    [25]
    Naumann B,Eberius M,Appenroth KJ. Growth rate based dose–response relationships and EC-values of ten heavy metals using the duckweed growth inhibition test (ISO 20079) with Lemna minor L. clone St[J]. J Plant Physiol,2007,164(12):1656−1664. doi: 10.1016/j.jplph.2006.10.011
    [26]
    Singh NK,Raghubanshi AS,Upadhyay AK,Rai UN. Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal,India[J]. Ecotoxicol Environ Saf,2016,130:224−233. doi: 10.1016/j.ecoenv.2016.04.024
    [27]
    李天煜. 稀脉萍(Lemna aequinoctialis)和紫萍(Spirodela polyrrhiza)的重金属生态毒理学研究[D]. 武汉:武汉大学,2003:1−10.
    [28]
    Rahman MA,Hasegawa H. Aquatic arsenic:phytoremediation using floating macrophytes[J]. Chemosphere,2011,83(5):633−646. doi: 10.1016/j.chemosphere.2011.02.045
    [29]
    Chaudhuri D,Majumder A,Misra AK,Bandyopadhyay K. Cadmium removal by Lemna minor and Spirodela polyrhiza[J]. Int J Phytoremediation,2014,16(11):1119−1132. doi: 10.1080/15226514.2013.821446
    [30]
    Rai PK. Heavy metals/metalloids remediation from wastewater using free floating macrophytes of a natural wetland[J]. Environ Technol Innov,2019,15:100393. doi: 10.1016/j.eti.2019.100393
    [31]
    Goswami C,Majumder A,Misra AK,Bandyopadhyay K. Arsenic uptake by Lemna minor in hydroponic system[J]. Int J Phytoremediation,2014,16(12):1221−1227. doi: 10.1080/15226514.2013.821452
    [32]
    Jayasri MA,Suthindhiran K. Effect of zinc and lead on the physiological and biochemical properties of aquatic plant Lemna minor:its potential role in phytoremediation[J]. Appl Water Sci,2017,7(3):1247−1253. doi: 10.1007/s13201-015-0376-x
    [33]
    Al-Khafaji MS,Al-Ani FH,Ibrahim AF. Removal of some heavy metals from industrial wastewater by Lemmna minor[J]. KSCE J Civ Eng,2018,22(4):1077−1082. doi: 10.1007/s12205-017-1112-x
    [34]
    胡丹. 浮萍(Lemna minor)对重金属钴(Co)和镍(Ni)胁迫的应答机制研究[D]. 南京:南京师范大学,2018:1−10.
    [35]
    Cvjetko P,Tolić S,Sikić S,Balen B,Tkalec M,et al. Effect of copper on the toxicity and genotoxicity of cadmium in duckweed (Lemna Minor L.)[J]. Arh Hig Rada Toksikol,2010,61(3):287−296. doi: 10.2478/10004-1254-61-2010-2059
    [36]
    Romero-Hernández JA,Amaya-Chávez A,Balderas-Hernández P,Roa-Morales G,González-Rivas N,Ángel M. Tolerance and hyperaccumulation of a mixture of heavy metals (Cu,Pb,Hg,and Zn) by four aquatic macrophytes[J]. Int J Phytoremediation,2017,19(3):239−245. doi: 10.1080/15226514.2016.1207610
    [37]
    Liu CG,Gu WC,Dai Z,Li J,Jiang HR,Zhang Q. Boron accumulation by Lemna minor L. under salt stress[J]. Sci Rep,2018,8(1):8954. doi: 10.1038/s41598-018-27343-y
    [38]
    Megateli S,Semsari S,Couderchet M. Toxicity and removal of heavy metals (cadmium,copper,and zinc) by Lemna gibba[J]. Ecotoxicol Environ Saf,2009,72(6):1774−1780. doi: 10.1016/j.ecoenv.2009.05.004
    [39]
    Abdallah MAM. Phytoremediation of heavy metals from aqueous solutions by two aquatic macrophytes,Ceratophyllum demersum and Lemna gibba L.[J]. Environ Technol,2012,33(14):1609−1614. doi: 10.1080/09593330.2011.640354
    [40]
    Shi JY,Abid AD,Kennedy IM,Hristova KR,Silk WK. To duckweeds (Landoltia punctata),nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution[J]. Environ Pollut,2011,159(5):1277−1282. doi: 10.1016/j.envpol.2011.01.028
    [41]
    Xie WY,Su JQ,Zhu YG. Arsenite oxidation by the phyllosphere bacterial community associated with Wolffia australiana[J]. Environ Sci Technol,2014,48(16):9668−9674. doi: 10.1021/es501510v
    [42]
    Song ZH,Huang GL. Toxic effects of pentachlorophenol on Lemna polyrhiza[J]. Ecotoxicol Environ Saf,2007,66(3):343−347. doi: 10.1016/j.ecoenv.2005.10.001
    [43]
    张立芳. 重金属锰、铜对紫背浮萍毒害机理研究[D]. 南京:南京师范大学,2016:1−10.
    [44]
    张婷婷. 浮萍(Lemna minor)对重金属汞(Hg)富集的响应——基于生理和RAPD分析[D]. 南京:南京师范大学,2017:1−10.
    [45]
    Palma P,Ledo L,Alvarenga P. Ecotoxicological endpoints,are they useful tools to support ecological status assessment in strongly modified water bodies?[J]. Sci Total Environ,2016,541:119−129. doi: 10.1016/j.scitotenv.2015.09.014
    [46]
    李伶. 镉、铜及其复合胁迫对浮萍(Spirodela polyrrhiea (L.)Schleid)叶绿素荧光参数的影响[D]. 上海:华东师范大学,2010:1−10.
    [47]
    褚为玥. 稀土元素铈(Ce)和钇(Y)在紫背浮萍体内的分子定位及其毒理学效应研究[D]. 南京:南京师范大学,2015:1−10.
    [48]
    Su CL,Jiang YJ,Li FF,Yang YR,Lu QQ,et al. Investigation of subcellular distribution,physiological,and biochemical changes in Spirodela polyrhiza as a function of cadmium exposure[J]. Environ Exp Bot,2017,142:24−33. doi: 10.1016/j.envexpbot.2017.07.015
    [49]
    Zhao Z,Shi HJ,Kang XJ,Liu CQ,Chen LC,et al. Inter- and intra-specific competition of duckweed under multiple heavy metal contaminated water[J]. Aquat Toxicol,2017,192:216−223. doi: 10.1016/j.aquatox.2017.09.023
    [50]
    Lu QQ,Zhang TT,Zhang W,Su CL,Yang YR,et al. Alleviation of cadmium toxicity in Lemna minor by exogenous salicylic acid[J]. Ecotoxicol Environ Saf,2018,147:500−508. doi: 10.1016/j.ecoenv.2017.09.015
    [51]
    Begović L,Mlinarić S,Antunović Dunić J,Katanić Z,Lončarić Z,et al. Response of Lemna minor L. to short-term cobalt exposure:the effect on photosynthetic electron transport chain and induction of oxidative damage[J]. Aquat Toxicol,2016,175:117−126. doi: 10.1016/j.aquatox.2016.03.009
    [52]
    Reale L,Ferranti F,Mantilacci S,Corboli M,Aversa S,et al. Cyto-histological and morpho-physiological responses of common duckweed (Lemna minor L.) to chromium[J]. Chemosphere,2016,145:98−105. doi: 10.1016/j.chemosphere.2015.11.047
    [53]
    Obermeier M,Schröder CA,Helmreich B,Schröder P. The enzymatic and antioxidative stress response of Lemna minor to copper and a chloroacetamide herbicide[J]. Environ Sci Pollut Res Int,2015,22(23):18495−18507. doi: 10.1007/s11356-015-5139-6
    [54]
    Hu CW,Liu L,Li XL,Xu YD,Ge ZG,Zhao YJ. Effect of graphene oxide on copper stress in Lemna minor L. :evaluating growth,biochemical responses,and nutrient uptake[J]. J Hazard Mater,2018,341:168−176. doi: 10.1016/j.jhazmat.2017.07.061
    [55]
    Zhang TT,Lu QQ,Su CL,Yang YR,Hu D,Xu QS. Mercury induced oxidative stress,DNA damage,and activation of antioxidative system and Hsp70 induction in duckweed (Lemna minor)[J]. Ecotoxicol Environ Saf,2017,143:46−56. doi: 10.1016/j.ecoenv.2017.04.058
    [56]
    Gür N,Türker OC,Böcük H. Toxicity assessment of boron (B) by Lemna minor L. and Lemna gibba L. and their possible use as model plants for ecological risk assessment of aquatic ecosystems with boron pollution[J]. Chemosphere,2016,157:1−9. doi: 10.1016/j.chemosphere.2016.04.138
    [57]
    邱寒. 紫背浮萍对铽(Tb)和钕(Nd)胁迫的响应:亚细胞分布、生理生化、超微结构和蛋白组学分析[D]. 南京:南京师范大学,2015:1−10.
    [58]
    徐婷. 紫背浮萍对稀土元素镨(Pr)和镱(Yb)胁迫的应答机制研究[D]. 南京:南京师范大学,2016:1−10.
    [59]
    杨程,李鹏民,张子山,Goltsev V,高辉远. 叶绿素延迟荧光的发生及其在光合作用研究中的应用[J]. 植物生理学报,2013,49(12):1277−1285.

    Yang C,Li PM,Zhang ZS,Goltsev V,Gao HY. Arising of chlorophyll delayed fluorescence and its application in photosynthesis research[J]. Plant Physiology Journal,2013,49(12):1277−1285.
    [60]
    Ziegler P,Sree KS,Appenroth KJ. Duckweed biomarkers for identifying toxic water contaminants?[J]. Environ Sci Pollut Res Int,2019,26(15):14797−14822. doi: 10.1007/s11356-018-3427-7
  • Related Articles

    [1]Liu Hongrui, Yan Baoxu, Zhao Yi, Yan Ruoyu, Jiang Kun. Advances in studies of ion channels and transporters involved in stomatal ABA signaling[J]. Plant Science Journal, 2024, 42(4): 543-554. DOI: 10.11913/PSJ.2095-0837.23277
    [2]Zheng Chuan, Yang Ying-Zeng, Luo Xiao-Feng, Dai Yu-Jia, Liu Wei-Guo, Yang Wen-Yu, Shu Kai. Current understanding of the roles of phytohormone abscisic acid in the regulation of plant root growth[J]. Plant Science Journal, 2019, 37(5): 690-698. DOI: 10.11913/PSJ.2095-0837.2019.50690
    [3]Sun De-Zhi, Han Xiao-Ri, Peng Jing, Fan Fu, Song Gui-Yun, Yang Heng-Shan. Effects of exogenous nitric oxide and salicylic acid on membrane peroxidation and the ascorbate-glutathione cycle in leaves of Lycopersicon esculentum seedlings under NaCl stress[J]. Plant Science Journal, 2018, 36(4): 612-622. DOI: 10.11913/PSJ.2095-0837.2018.40612
    [4]LI Kun, WANG Xian-Ping, YANG Feng-Bo, XU Shou-Ming. Roles of Mitogen-activated Protein Kinase Cascades in ABA Signaling Regulation of Plant Development[J]. Plant Science Journal, 2014, 32(5): 531-539. DOI: 10.11913/PSJ.2095-0837.2014.50531
    [5]SUN Xin, LEI Tao, YUAN Shu, LIN Hong-Hui. Progress in Research of Dehydrins[J]. Plant Science Journal, 2005, 23(3): 299-304.
    [6]ZHANG Yi-Lin, ZHAO Fan, ZHAO Jie. Effects of Exogenous ABA on the Seed Germination of Rice (Oryza sativa L.) and the Expression of Relative Genes[J]. Plant Science Journal, 2005, 23(3): 203-210.
    [7]LI Ke-Ying, LI Jia-Ru. The Effects of Salicylic Acid on Lateral Roots Formation in Rape Seedlings[J]. Plant Science Journal, 2004, 22(4): 345-348.
    [8]Zhao Bosheng, Mo Hua. DETOXICATION OF ASCORBIC ACID AND MOLYSITE ON THE ROOT GROWTH OF GARLIC UNDER CADMIUM POLLUTION[J]. Plant Science Journal, 1997, 15(2): 167-172.
    [9]Peng Yanhua, Liu Chengyun, Lu Dayan, Ye Wancheng. RESPONSE OF WATER HYACINTH LEAVES TO LOW TEMPERATURE STRESS——INCREASE IN ABSCISIC ACID AND SOLUBLE PROTEIN CONCENTRATIONS[J]. Plant Science Journal, 1992, 10(2): 123-127.
    [10]Peng Yanhua, Liu Chengyun. RECENT ADVANCES IN RELATION BETWEEN ABA AND EMBRYOGENESIS AND THE MODE OF ABA ACTION[J]. Plant Science Journal, 1991, 9(3): 289-292.

Catalog

    Article views (70) PDF downloads (14) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return