Advance Search
Xie TT,Xu DL,Yi LL,Fang PF,Zhong QY,Hou ZQ,Yang QP,Song QN,Liu J. Effects of forest canopy height on decomposition dynamics of litter with varying qualities[J]. Plant Science Journal,2024,42(6):757−765. DOI: 10.11913/PSJ.2095-0837.24119
Citation: Xie TT,Xu DL,Yi LL,Fang PF,Zhong QY,Hou ZQ,Yang QP,Song QN,Liu J. Effects of forest canopy height on decomposition dynamics of litter with varying qualities[J]. Plant Science Journal,2024,42(6):757−765. DOI: 10.11913/PSJ.2095-0837.24119

Effects of forest canopy height on decomposition dynamics of litter with varying qualities

More Information
  • Received Date: May 10, 2024
  • Accepted Date: June 10, 2024
  • Leaf litter decomposition and nutrient release play important roles in nutrient cycling within forest ecosystems. This study investigated the decomposition dynamics and nutrient release of litter at varying forest heights. Leaf litter from three species: Cunninghamia lanceolata (Lamb.) Hook, Castanopsis eyrei (Champ. ex Benth.) Tutcher, and Alniphyllum fortunei (Hemsl.) Penk, which representing a gradient from low to high litter quality, was examined using a litterbag approach. A year-long decomposition experiment was conducted at three vertical forest heights: 5 m (H5) , 0.5 m (H0.5) , and ground (H0) . Results showed that: (1) Over the one-year decomposition period, litter decomposition rates in the air (H5 and H0.5) were 14.13%–21.22% slower than those on the ground (H0). (2) Height-related differences in decomposition rates emerged during different phases of decomposition, with A. fortunei showing pronounced early-stage differences and Castanopsis eyrei and Cunninghamia lanceolata exhibiting late-stage differences. (3) High-quality litter consistently decomposed faster than low-quality litter across all heights, regardless of whether it was on the ground or in the air. (4) After one year, nutrient retention rates across all heights followed the trend: A. fortunei<Castanopsis eyrei<Cunninghamia lanceolata. The nutrient stoichiometric ratios during decomposition were primarily affected by the initial chemical composition of the litter rather than the vertical differences in forest height.

  • [1]
    赵小祥,朱彬彬,田秋香,林巧玲,陈龙,刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报,2023,47(5):597−607. doi: 10.17521/cjpe.2022.0143

    Zhao XX,Zhu BB,Tian QX,Lin QL,Chen L,Liu F. Research progress on home-field advantage of leaf litter decomposition[J]. Chinese Journal of Plant Ecology,2023,47(5):597−607. doi: 10.17521/cjpe.2022.0143
    [2]
    侯卓男,李欣彤,张新军,马恬恬,李傲,等. 海拔和坡向对色季拉山高山杜鹃凋落物分解的影响[J]. 中国农业大学学报,2024,29(4):264−273.

    Hou ZN,Li XT,Zhang XJ,Ma TT,Li A,et al. Effects of elevation and slope orientation on litter decomposition of Rhododendron simsii in Mount Segrila[J]. Journal of China Agricultural University,2024,29(4):264−273.
    [3]
    Mao R,Wu PP,Xu JW,Wan SZ,Zhang Y. Leaf litter decomposition in the air should not be ignored in subtropical plantations of China[J]. For Ecol Manage,2021,499:119614. doi: 10.1016/j.foreco.2021.119614
    [4]
    丁翊东,徐江琪,郑娇,吴盼盼,毛瑢. 亚热带典型人工林凋落物地表和空中分解过程中溶解性有机质数量和光谱特征[J]. 生态学杂志,2021,40(6):1599−1608.

    Ding YD,Xu JQ,Zheng J,Wu PP,Mao R. Quantity and optical characteristics of dissolved organic matter derived from decomposing leaf litter on the ground and in the air in typical subtropical plantations[J]. Chinese Journal of Ecology,2021,40(6):1599−1608.
    [5]
    Yan WM,Shangguan ZP,Zhong YQW. Responses of mass loss and nutrient release in litter decomposition to ultraviolet radiation[J]. J Soils Sediments,2021,21(2):698−704. doi: 10.1007/s11368-020-02810-0
    [6]
    Zhang L,Liu JR,Yin R,Xu ZF,You CM,et al. Soil fauna accelerated litter C and N release by improving litter quality across an elevational gradient[J]. Ecol Process,2023,12(1):47. doi: 10.1186/s13717-023-00459-4
    [7]
    周庭宇,肖洋,黄庆阳,谢宸,罗优. 森林凋落物分解的研究进展与展望[J]. 中国农学通报,2022,38(33):44−51.

    Zhou TY,Xiao Y,Huang QY,Xie C,Luo Y. Forest litter decomposition:research progress and prospect[J]. Chinese Agricultural Science Bulletin,2022,38(33):44−51.
    [8]
    吴盼盼. 亚热带四种典型人工林凋落叶地表和空中分解和养分释放动态[D]. 南昌:江西农业大学,2021:3−8.
    [9]
    鲁昱,崔莎莎,李文洋,刘贵华,周雯. 三种常见挺水植物凋落物的分解动态及养分释放规律[J]. 植物科学学报,2023,41(1):17−25.

    Lu Y,Cui SS,Li WY,Liu GH,Zhou W. Dynamic characteristics of litter decomposition and nutrient release of three common emergent plants[J]. Plant Science Journal,2023,41(1):17−25.
    [10]
    Bradford MA,Berg B,Maynard DS,Wieder WR,Wood SA. Understanding the dominant controls on litter decomposition[J]. J Ecol,2016,104(1):229−238. doi: 10.1111/1365-2745.12507
    [11]
    Peng Y,Holmstrup M,Schmidt IK,Bachega LR,Schelfhout S,et al. Tree species identity is the predominant modulator of the effects of soil fauna on leaf litter decomposition[J]. For Ecol Manage,2022,520:120396. doi: 10.1016/j.foreco.2022.120396
    [12]
    郭鑫,罗欢,许雪梅,马爱霞,尚振艳,等. 不同品质凋落物分解对黄土高原草地土壤有机碳及其稳定性的影响[J]. 草业学报,2023,32(5):83−93.

    Guo X,Luo H,Xu XM,Ma AX,Shang ZY,et al. Effects of litter decomposition with different qualities on soil organic carbon content and its stability in grassland on the Loess Plateau[J]. Acta Prataculturae Sinica,2023,32(5):83−93.
    [13]
    徐定兰. 官山森林大样地凋落物产量、储量及分解动态[D]. 南昌:江西农业大学,2019:30−43.
    [14]
    鲍士旦. 土壤农化分析[M]. 3版. 北京:中国农业出版社,2000:14−97.
    [15]
    陈家琛,左晓东,陈立,朱琴,孟芳芳,等. 间伐对杉木人工林凋落物分解和养分释放速率的影响[J]. 西北林学院学报,2023,38(2):119−125.

    Chen JC,Zuo XD,Chen L,Zhu Q,Meng FF,et al. Effects of different thinning intensities on the decomposition and nutrient release rate of Chinese fir plantation leaves[J]. Journal of Northwest Forestry University,2023,38(2):119−125.
    [16]
    王嘉年,李向义,李成道,张爱林,林丽莎. 自然光照和荫蔽条件下两种荒漠植物叶片凋落物分解特征研究[J]. 干旱区地理,2023,46(6):949−957.

    Wang JN,Li XY,Li CD,Zhang AL,Lin LS. Decomposition characteristics of two desert plant leaf under natural light and shade environment[J]. Arid Land Geography,2023,46(6):949−957.
    [17]
    刘易,曹雨虹,张艺帆,谢伟东. 南亚热带滨海沙地3种林分类型凋落物的养分释放动态[J]. 西北农林科技大学学报(自然科学版),2022,50(8):55−68.

    Liu Y,Cao YH,Zhang YF,Xie WD. Nutrient release dynamics of litter in three forest types in coastal sandy land of south subtropical region[J]. Journal of Northwest A & F University (Natural Science Edition),2022,50(8):55−68.
    [18]
    吴盼盼,张艳,江灵昕,李睿,毛瑢. 林分类型和分解位置对亚热带人工林凋落叶养分动态的影响[J]. 生态学杂志,2024,43(9):2632−2640.

    Wu PP,Zhang Y,Jiang LX,Li R,Mao R. Effects of stand type and decomposition position on leaf litter nutrient dynamics in subtropical plantations of China[J]. Chinese Journal of Ecology,2024,43(9):2632−2640.
    [19]
    邓纯章,侯建萍,李寿昌,赵恒康,付昀. 哀牢山北段主要森林类型凋落物的研究[J]. 植物生态学与地植物学学报,1993(4):364−370.

    Deng CZ,Hou JP,Li SC,Zhao HK,Fu Y. Reseaches on litterfall distributed in seven forests at varied altitudes,on Ailao Mountain,Yunan[J]. Chinese Journal of Plant Ecology,1993(4):364−370.
    [20]
    Newell SY,Arsuffi TL,Palm LA. Misting and nitrogen fertilization of shoots of a saltmarsh grass:effects upon fungal decay of leaf blades[J]. Oecologia,1996,108(3):495−502. doi: 10.1007/BF00333726
    [21]
    董学德,高鹏,李腾,张佳辰,董金伟,等. 土壤微生物群落对麻栎-刺槐混交林凋落物分解的影响[J]. 生态学报,2021,41(6):2315−2325.

    Dong XD,Gao P,Li T,Zhang JC,Dong JW,et al. Effects of soil microbial community on the litter decomposition in mixed Quercus acutissima Carruth. and Robinia pseudoacacia L. forest[J]. Acta Ecologica Sinica,2021,41(6):2315−2325.
    [22]
    昝鹏. 土壤动物对森林生态系统凋落物分解影响机制研究[D]. 哈尔滨:东北林业大学,2021:30−46.
    [23]
    翁轰,李志安,屠梦照,姚文华. 鼎湖山森林凋落物量及营养元素含量研究[J]. 植物生态学与地植物学学报,1993,17(4):299−304.

    Weng H,Li ZA,Tu MZ,Yao WH. The production and nutrient contents of litter in forests of Ding Hu Shan Mountain[J]. Acta Phytoecologica et Geobotanica Sinica,1993,17(4):299−304.
    [24]
    马志良,高顺,杨万勤,吴福忠. 不同季节亚热带常绿阔叶林6个树种凋落叶钙、镁、锰的释放特征[J]. 应用生态学报,2015,26(10):2913−2920.

    Ma ZL,Gao S,Yang WQ,Wu FZ. Seasonal release characteristics of Ca,Mg and Mn of foliar litter of six tree species in subtropical evergreen broadleaved forest[J]. Chinese Journal of Applied Ecology,2015,26(10):2913−2920.
    [25]
    Bohara M,Acharya K,Perveen S,Manevski K,Hu CS, et al. In situ litter decomposition and nutrient release from forest trees along an elevation gradient in Central Himalaya[J]. Catena,2020,194:104698.
    [26]
    Perry DA,Choquette C,Schroeder P. Nitrogen dynamics in conifer-dominated forests with and without hardwoods[J]. Can J For Res,1987,17(11):1434−1441. doi: 10.1139/x87-221
    [27]
    李素丽,徐佳文,丁翊东,毛瑢. 赣江中游水源涵养林乔木和蕨类植物凋落物持水和失水特征[J]. 水土保持学报,2021,35(3):170−176.

    Li SL,Xu JW,Ding YD,Mao R. Litter water-holding and water-loss characteristics of trees and ferns in the water conservation forests at the middle reaches of the Gan River[J]. Journal of Soil and Water Conservation,2021,35(3):170−176.
    [28]
    张艳,李勋,宋思梦,张健. 马尾松与乡土阔叶树种混合凋落叶分解的质量损失[J]. 林业科学研究,2022,35(5):134−145.

    Zhang Y,Li X,Song SM,Zhang J. Mass loss of mixed leaf litter with Pinus massoniana and native broad-leaved species[J]. Forest Research,2022,35(5):134−145.
    [29]
    邓承佳,袁访,卜通达,梁红,宋理洪. 土壤动物对黔中地区喀斯特森林凋落物分解的影响[J]. 林业科学研究,2022,35(3):72−81.

    Deng CJ,Yuan F,Bu TD,Liang H,Song LH. Influence of soil fauna on litter decomposition in central Guizhou karst forest[J]. Forest Research,2022,35(3):72−81.
    [30]
    肖玲,马燕天,甘志伟,蔡润发,李卓琳,等. 土壤动物对鄱阳湖湿地冬季凋落物分解过程的影响[J]. 湖泊科学,2020,32(2):395−405. doi: 10.18307/2020.0209

    Xiao L,Ma YT,Gan ZW,Cai RF,Li ZL,et al. Influence of soil fauna on the litter decomposition of Lake Poyang Wetland in winter[J]. Journal of Lake Sciences,2020,32(2):395−405. doi: 10.18307/2020.0209
    [31]
    董学德. 麻栎-刺槐林凋落物分解过程中土壤微生物群落变化特征及影响因素[D]. 泰安:山东农业大学,2021:20−24.
    [32]
    Pei GT,Liu J,Peng B,Gao DC,Wang C,et al. Nitrogen,lignin,C/N as important regulators of gross nitrogen release and immobilization during litter decomposition in a temperate forest ecosystem[J]. For Ecol Manage,2019,440:61−69. doi: 10.1016/j.foreco.2019.03.001
    [33]
    李志安,邹碧,丁永祯,曹裕松. 森林凋落物分解重要影响因子及其研究进展[J]. 生态学杂志,2004,23(6):77−83.

    Li ZA,Zou B,Ding YZ,Cao YS. Key factors of forest litter decomposition and research progress[J]. Chinese Journal of Ecology,2004,23(6):77−83.
    [34]
    曹丽花,尹为玲,刘合满,杨红,连玉珍,郭丰磊. 西藏东南部色季拉山主要类型森林叶片和枯落物养分含量特征[J]. 生态学报,2019,39(11):4029−4038.

    Cao LH,Yin WL,Liu HM,Yang H,Lian YZ,Guo FL. Stoichiometric characteristics of leaves and litter in typical forest types on Sejila Mountain,southeastern Tibet[J]. Acta Ecologica Sinica,2019,39(11):4029−4038.
    [35]
    岳新建,叶功富,高伟,陈智勇,陈梦瑶,李蝶. 海岸沙地主要森林的凋落物分解及生态化学计量特征[J]. 水土保持研究,2021,28(4):77−83.

    Yue XJ,Ye GF,Gao W,Chen ZY,Chen MY,Li D. Characteristics of litter decomposition and ecological stoichiometry of different forests on coastal sandy land in Fujian province[J]. Research of Soil and Water Conservation,2021,28(4):77−83.
    [36]
    赵喆,刘延文,纪福利,刘晓兰,贾忠奎,马履一. 华北落叶松—白桦凋落物混合分解研究[J]. 中南林业科技大学学报,2016,36(12):74−78,84.

    Zhao Z,Liu YW,Ji FL,Liu XL,Jia ZK,Ma LY. Mixed litter decomposition of Larix principis-rupprechtii and Betula platyphylla[J]. Journal of Central South University of Forestry & Technology,2016,36(12):74−78,84.
    [37]
    贺金生,韩兴国. 生态化学计量学:探索从个体到生态系统的统一化理论[J]. 植物生态学报,2010,34(1):2−6.

    He JS,Han YG. Ecological stoichiometry:searching for unifying principles from individuals to ecosystems[J]. Chinese Journal of Plant Ecology,2010,34(1):2−6.
    [38]
    李澳归,蔡世锋,罗素珍,王小红,曹丽荣,等. 亚热带常绿阔叶林62种木本植物凋落叶碳氮磷化学计量特征[J]. 应用生态学报,2023,34(5):1153−1160.

    Li AG,Cai SF,Luo SZ,Wang XH,Cao LR,et al. C,N,and P stoichiometry for leaf litter of 62 woody species in a subtropical evergreen broadleaved forest[J]. Chinese Journal of Applied Ecology,2023,34(5):1153−1160.
  • Related Articles

    [1]Liu Hongrui, Yan Baoxu, Zhao Yi, Yan Ruoyu, Jiang Kun. Advances in studies of ion channels and transporters involved in stomatal ABA signaling[J]. Plant Science Journal, 2024, 42(4): 543-554. DOI: 10.11913/PSJ.2095-0837.23277
    [2]Zheng Chuan, Yang Ying-Zeng, Luo Xiao-Feng, Dai Yu-Jia, Liu Wei-Guo, Yang Wen-Yu, Shu Kai. Current understanding of the roles of phytohormone abscisic acid in the regulation of plant root growth[J]. Plant Science Journal, 2019, 37(5): 690-698. DOI: 10.11913/PSJ.2095-0837.2019.50690
    [3]Sun De-Zhi, Han Xiao-Ri, Peng Jing, Fan Fu, Song Gui-Yun, Yang Heng-Shan. Effects of exogenous nitric oxide and salicylic acid on membrane peroxidation and the ascorbate-glutathione cycle in leaves of Lycopersicon esculentum seedlings under NaCl stress[J]. Plant Science Journal, 2018, 36(4): 612-622. DOI: 10.11913/PSJ.2095-0837.2018.40612
    [4]LI Kun, WANG Xian-Ping, YANG Feng-Bo, XU Shou-Ming. Roles of Mitogen-activated Protein Kinase Cascades in ABA Signaling Regulation of Plant Development[J]. Plant Science Journal, 2014, 32(5): 531-539. DOI: 10.11913/PSJ.2095-0837.2014.50531
    [5]SUN Xin, LEI Tao, YUAN Shu, LIN Hong-Hui. Progress in Research of Dehydrins[J]. Plant Science Journal, 2005, 23(3): 299-304.
    [6]ZHANG Yi-Lin, ZHAO Fan, ZHAO Jie. Effects of Exogenous ABA on the Seed Germination of Rice (Oryza sativa L.) and the Expression of Relative Genes[J]. Plant Science Journal, 2005, 23(3): 203-210.
    [7]LI Ke-Ying, LI Jia-Ru. The Effects of Salicylic Acid on Lateral Roots Formation in Rape Seedlings[J]. Plant Science Journal, 2004, 22(4): 345-348.
    [8]Zhao Bosheng, Mo Hua. DETOXICATION OF ASCORBIC ACID AND MOLYSITE ON THE ROOT GROWTH OF GARLIC UNDER CADMIUM POLLUTION[J]. Plant Science Journal, 1997, 15(2): 167-172.
    [9]Peng Yanhua, Liu Chengyun, Lu Dayan, Ye Wancheng. RESPONSE OF WATER HYACINTH LEAVES TO LOW TEMPERATURE STRESS——INCREASE IN ABSCISIC ACID AND SOLUBLE PROTEIN CONCENTRATIONS[J]. Plant Science Journal, 1992, 10(2): 123-127.
    [10]Peng Yanhua, Liu Chengyun. RECENT ADVANCES IN RELATION BETWEEN ABA AND EMBRYOGENESIS AND THE MODE OF ABA ACTION[J]. Plant Science Journal, 1991, 9(3): 289-292.
  • Other Related Supplements

Catalog

    Article views (110) PDF downloads (20) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return