Citation: | Chen L,Fang J,Jiang QH,Ren BS,Liu F. Spatiotemporal variation in forest net ecosystem productivity and its responses to climatic factors in the water source area of the Middle Route of the South-to-North Water Diversion Project[J]. Plant Science Journal,2025,43(2):149−161. DOI: 10.11913/PSJ.2095-0837.24130 |
The carbon sequestration capacity of the water source area of the Middle Route of the South-to-North Water Diversion Project (hereinafter referred to as the water source area) is strongly influenced by climate variability. This study employed FORCCHN2, a second-generation individual-based forest ecosystem carbon cycling model, to estimate forest net ecosystem productivity (NEP) in the water source area from 2002 to 2020 and to assess its spatiotemporal dynamics and key driving factors. Results indicated that from 2002 to 2020, the average pixel-scale forest NEP ranged from 308.88 to 761.22 g C·m−2·a−1, with radiation and temperature identified as primary determinants. Over this period, NEP exhibited a significant downward trend, decreasing at an average annual rate of 4.41 g C·m−2·a−1, with spatial heterogeneity in this decline. Pixel-based correlation analysis of interannual variations in gross primary productivity (GPP), soil respiration (SR), and vegetation respiration (VR), along with their associations with climate factors, revealed that in the eastern region, rising temperatures led to a higher SR increase relative to GPP. Additionally, reductions in solar radiation in the northwest and southwest regions contributed to GPP decline in these areas.
[1] |
Masson-Delmotte VP,Zhai P,Pirani SL,Connors C,Péan S,et al. IPCC,2021:Summary for Policymakers. In:Climate Change 2021:the Physical Science Basis. Contribution of Working Group Ⅰ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge:Cambridge University Press,2021:3−32.
|
[2] |
Bonan GB. Forests and climate change:forcings,feedbacks,and the climate benefits of forests[J]. Science,2008,320(5882):1444−1449. doi: 10.1126/science.1155121
|
[3] |
Tang YK,Jia C,Wang LN,Wen XF,Wang HM. Solar energy dominates and soil water modulates net ecosystem productivity and evapotranspiration across multiple timescales in a subtropical coniferous plantation[J]. Agric Forest Meteror,2021,300:108310. doi: 10.1016/j.agrformet.2020.108310
|
[4] |
Song J,Wan SQ,Piao SL,Knapp AK,Classen AT,et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change[J]. Nat Ecol Evol,2019,3(9):1309−1320. doi: 10.1038/s41559-019-0958-3
|
[5] |
Piao SL,He Y,Wang XH,Chen FH. Estimation of China’s terrestrial ecosystem carbon sink:methods,progress and prospects. Sci China Earth Sci,2022,65(4):641−651.
|
[6] |
刘坤,张慧,孔令辉,乔亚军,胡梦甜. 陆地生态系统碳汇评估方法研究进展[J]. 生态学报,2023,43(10):4294−4307.
Liu K,Zhang H,Kong LH,Qiao YJ,Hu MT. An overview of terrestrial ecosystem carbon sink assessment methods towards achieving carbon neutrality in China[J]. Acta Ecologica Sinica,2023,43(10):4294−4307.
|
[7] |
翁升恒,张玉琴,姜冬昕,潘卫华,李丽纯,张方敏. 福建省森林植被NEP时空变化及影响因子分析[J]. 生态环境学报,2023,32(5):845−856.
Weng SH,Zhang YQ,Jiang DX,Pan WH,Li LC,Zhang FM. Spatio-temporal changes and attribution analysis of net ecosystem productivity in forest ecosystem in Fujian province[J]. Ecology and Environmental Sciences,2023,32(5):845−856.
|
[8] |
Lyu JQ,Fu XH,Lu C,Zhang YY,Luo PP,et al. Quantitative assessment of spatiotemporal dynamics in vegetation NPP,NEP and carbon sink capacity in the Weihe River Basin from 2001 to 2020[J]. J Clean Prod,2023,428:139384. doi: 10.1016/j.jclepro.2023.139384
|
[9] |
Qi SY,Zhang HQ,Zhang M. Evolutionary characteristics of carbon sources/sinks in Chinese terrestrial ecosystems regarding to temporal effects and geographical partitioning[J]. Ecol Indic,2024,160:111923. doi: 10.1016/j.ecolind.2024.111923
|
[10] |
Liang L,Wang QJ,Qiu SY,Geng D,Wang SG. NEP estimation of terrestrial ecosystems in China using an improved CASA model and soil respiration model[J]. IEEE J Select Top Appl Earth Obser Remote Sens,2023,16:10203−10215. doi: 10.1109/JSTARS.2023.3325774
|
[11] |
曹云,孙应龙,姜月清,万君. 黄河流域净生态系统生产力的时空分异特征及其驱动因子分析[J]. 生态环境学报,2022,31(11):2101−2110.
Cao Y,Sun YL,Jiang YQ,Wan J. Analysis on temporal-spatial variations and driving factors of net ecosystem productivity in the Yellow River Basin[J]. Ecology and Environment Sciences,2022,31(11):2101−2110.
|
[12] |
Qiu SY,Liang L,Wang QJ,Geng D,Wu JJ,et al. Estimation of European terrestrial ecosystem NEP based on an improved CASA model[J]. IEEE J Select Top Appl Earth Obser Remote Sens,2023,16:1244−1255. doi: 10.1109/JSTARS.2022.3233128
|
[13] |
Feng X,Fan QB,Qu JJ,Ding XH,Niu ZR. Characteristics of carbon sources and sinks and their relationships with climate factors during the desertification reversal process in Yulin,China[J]. Front For Glob Change,2023,6:1288449. doi: 10.3389/ffgc.2023.1288449
|
[14] |
赵宁,周蕾,庄杰,王永琳,周稳,等. 中国陆地生态系统碳源/汇整合分析[J]. 生态学报,2021,41(19):7648−7658.
Zhao N,Zhou L,Zhuang J,Wang YL,Zhou W,et al. Integration analysis of the carbon sources and sinks in terrestrial ecosystems,China[J]. Acta Ecologica Sinica,2021,41(19):7648−7658.
|
[15] |
Sallaba F,Lehsten D,Seaquist J,Sykes MT. A rapid NPP meta-model for current and future climate and CO2 scenarios in Europe[J]. Ecol Model,2015,302:29−41. doi: 10.1016/j.ecolmodel.2015.01.026
|
[16] |
Verbeeck H,Samson R,Verdonck F,Lemeur R. Parameter sensitivity and uncertainty of the forest carbon flux model FORUG:a Monte Carlo analysis[J]. Tree Physiol,2006,26(6):807−817. doi: 10.1093/treephys/26.6.807
|
[17] |
Fang J,Shugart HH,Liu F,Yan XD,Song YK,Lv FC. FORCCHN V2.0:an individual-based model for predicting multiscale forest carbon dynamics[J]. Geosci Model Dev,2022,15(17):6863−6872. doi: 10.5194/gmd-15-6863-2022
|
[18] |
Fang J,Lutz JA,Wang LB,Shugart HH,Yan XD. Using climate-driven leaf phenology and growth to improve predictions of gross primary productivity in North American forests[J]. Glob Change Biol,2020,26(12):6974−6988. doi: 10.1111/gcb.15349
|
[19] |
Fang J,Lutz JA,Shugart HH,Yan XD,Xie WQ,Liu F. Improving intra-and inter-annual GPP predictions by using individual tree inventories and leaf growth dynamics[J]. J Appl Ecol,2021,58(10):2315−2328. doi: 10.1111/1365-2664.13960
|
[20] |
Fang J,Shugart HH,Wang LB,Lutz JA,Yan XD,Liu F. Optimal representation of spring phenology on photosynthetic productivity across the northern hemisphere forests[J]. Agric Forest Meteor,2024,350:109975. doi: 10.1016/j.agrformet.2024.109975
|
[21] |
Niu PT,Zhang EC,Feng Y,Peng PH. Spatial-temporal pattern analysis of land use and water yield in water source region of middle route of South-to-North water transfer project based on Google Earth Engine[J]. Water,2022,14(16):2535. doi: 10.3390/w14162535
|
[22] |
刘海,黄跃飞,郑粮. 气候与人类活动对丹江口水源区植被覆盖变化的影响[J]. 农业工程学报,2020,36(6):97−105. doi: 10.11975/j.issn.1002-6819.2020.06.012
Liu H,Huang YF,Zheng L. Effects of climate and human activities on vegetation cover changes in Danjiangkou water source areas[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(6):97−105. doi: 10.11975/j.issn.1002-6819.2020.06.012
|
[23] |
刘洋. 南水北调中线工程水源地径流对气候变化和土地利用变化的响应[D]. 北京:中国科学院大学,2021:14−16.
|
[24] |
刘金宝,刘轩,孙增慧,赵永华,王博. 丹江口水库土地利用与水质变化响应关系研究[J]. 遥感技术与应用,2023,38(2):285−296.
Liu JB,Liu X,Sun ZH,Zhao YH,Wang B. Study on the relationship between land use and water quality change in Danjiangkou reservoir[J]. Remote Sensing Technology and Application,2023,38(2):285−296.
|
[25] |
Jiang QH,Chen YY,Hu JL,Liu F. Use of visible and near-infrared reflectance spectroscopy models to determine soil erodibility factor (K) in an ecologically restored watershed[J]. Remote Sens,2020,12(18):3103. doi: 10.3390/rs12183103
|
[26] |
Wang YD,Liu XL,Wang T,Zhang XY,Feng YZ,et al. Relating land-use/land-cover patterns to water quality in watersheds based on the structural equation modeling[J]. Catena,2021,206:105566. doi: 10.1016/j.catena.2021.105566
|
[27] |
胡圣,夏凡,张爱静,龚治娟,周正,王英才. 丹江口水源区水生态功能一二级分区研究[J]. 长江流域资源与环境,2017,26(8):1208−1217. doi: 10.11870/cjlyzyyhj201708011
Hu S,Xia F,Zhang AJ,Gong ZJ,Zhou Z,Wang YC. Level Ⅰ and Ⅱ aquatic eco-regionalization in the water source area of Danjiangkou reservoir[J]. Resources and Environment in the Yangtze Basin,2017,26(8):1208−1217. doi: 10.11870/cjlyzyyhj201708011
|
[28] |
Gao WW,Zeng Y,Liu Y,Wu BF. Human activity intensity assessment by remote sensing in the water source area of the middle route of the South-to-North Water Diversion project in China[J]. Sustainability,2019,11(20):5670. doi: 10.3390/su11205670
|
[29] |
Yuan J,Jose S,Hu ZY,Pang JZ,Hou L,Zhang SX. Biometric and eddy covariance methods for examining the carbon balance of a Larix principis-rupprechtii forest in the Qinling Mountains,China[J]. Forests,2018,9(2):67. doi: 10.3390/f9020067
|
[30] |
Cheng K,Chen YL,Xiang TY,Yang HT,Liu WY,Ren Y,et al. A 2020 forest age map for China with 30 m resolution[J]. Earth Syst Sci Data,2024,16(2):803−819. doi: 10.5194/essd-16-803-2024
|
[31] |
延晓冬,赵俊芳. 基于个体的中国森林生态系统碳收支模型FORCCHN及模型验证[J]. 生态学报,2007,27(7):2684−2694. doi: 10.3321/j.issn:1000-0933.2007.07.004
Yan XD,Zhao JF. Establishing and validation individual-based carbon budget model FORCCHN of forest ecosystems in China[J]. Acta Ecologica Sinica,2007,27(7):2684−2694. doi: 10.3321/j.issn:1000-0933.2007.07.004
|
[32] |
Parton WJ,Scurlock JMO,Ojima DS,Gilmanov TG,Scholes RJ,et al. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide[J]. Global Biogeochem Cycles,1993,7(4):785−809. doi: 10.1029/93GB02042
|
[33] |
Duan HC,Xue X,Wang T,Kang WP,Liao J,Liu SL. Spatial and temporal differences in alpine meadow,alpine steppe and all vegetation of the Qinghai-Tibetan Plateau and their responses to climate change[J]. Remote Sens,2021,13(4):669. doi: 10.3390/rs13040669
|
[34] |
Yang C,Zhai GH,Fu MC,Sun C. Spatiotemporal characteristics and influencing factors of net primary production from 2000 to 2021 in China[J]. Environ Sci Pollut Res,2023,30(39):91084−91094. doi: 10.1007/s11356-023-28666-8
|
[35] |
Guo W,Ni XN,Jing DY,Li SH. Spatial-temporal patterns of vegetation dynamics and their relationships to climate variations in Qinghai Lake Basin using MODIS time-series data[J]. J Geogr Sci,2014,24(6):1009−1021. doi: 10.1007/s11442-014-1134-y
|
[36] |
Mu SJ,Yang HF,Li JL,Chen YZ,Gang CC,et al. Spatio-temporal dynamics of vegetation coverage and its relationship with climate factors in Inner Mongolia,China[J]. J Geogr Sci,2013,23(2):231−246. doi: 10.1007/s11442-013-1006-x
|
[37] |
黄志霖,肖文发. 生物群区和林龄对森林土壤呼吸及其组分的影响[J]. 生态学报,2008,28(9):4078−4087. doi: 10.3321/j.issn:1000-0933.2008.09.003
Huang ZL,Xiao WF. Biome and stand ages impacts on soil CO2 efflux and partitioning:a global trends[J]. Acta Ecologica Sinica,2008,28(9):4078−4087. doi: 10.3321/j.issn:1000-0933.2008.09.003
|
[38] |
Chasmer L,Kljun N,Barr A,Black A,Hopkinson C,et al. Influences of vegetation structure and elevation on CO2 uptake in a mature jack pine forest in Saskatchewan,Canada[J]. Can J For Res,2008,38(11):2746−2761. doi: 10.1139/X08-121
|
[39] |
Wang J,Dong J,Yi Y,Lu G,Oyler J,et al. Decreasing net primary production due to drought and slight decreases in solar radiation in China from 2000 to 2012[J]. J Geophys Res Biogeosci,2017,122(1):261−278. doi: 10.1002/2016JG003417
|
[40] |
Sun R,Chen SH,Su HB,Hao GB. Spatiotemporal variation of vegetation coverage and its response to climate change before and after implementation of grain for green project in the Loess Plateau[C]//IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama:IEEE,2019:9546−9549.
|
[41] |
Zhang CL,Huang N,Wang L,Song WJ,Zhang YL,Niu Z. Spatial and temporal pattern of net ecosystem productivity in China and its response to climate change in the past 40 years[J]. Int J Environ Res Public Health,2022,20(1):92. doi: 10.3390/ijerph20010092
|
[42] |
荣艳淑,张行南,姜海燕,白路遥. 长江上游区域蒸发皿蒸发量变化及其对水分循环的影响[J]. 地球物理学报,2012,55(9):2889−2897. doi: 10.6038/j.issn.0001-5733.2012.09.008
Rong YS,Zhang XN,Jiang HY,Bai LY. Pan evaporation change and its impact on water cycle over the upper reach of the Yangtze River[J]. Chinese Journal of Geophysics,2012,55(9):2889−2897. doi: 10.6038/j.issn.0001-5733.2012.09.008
|
[43] |
张静,吴洁,秦公伟,冯俊霄,郑博,赵文博. 秦巴山区地表太阳辐射的时空动态及农业气候区划研究[J]. 地理科学,2020,40(10):1742−1752.
Zhang J,Wu J,Qin GW,Feng JX,Zheng B,Zhao WB. Spatio-temporal dynamics of surface solar radiation and agroclimatic zoning in the Qinling-Bashan Mountains[J]. Scientia Geographica Sinica,2020,40(10):1742−1752.
|
[44] |
Huang N,Wang L,Song XP,Black TA,Jassal RS,et al. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover[J]. Sci Adv,2020,6(41):eabb8508. doi: 10.1126/sciadv.abb8508
|