Advance Search
WEN Shu-Sheng, CHENG Fang-Yun, ZHONG Yuan, WANG Xin, LI Liu-Zemu, HUANG Nong-Zhang. Protocol for the Micropropagation of Tree Peony (Paeonia × lemoinei ‘High Noon’)[J]. Plant Science Journal, 2016, 34(1): 143-150. DOI: 10.11913/PSJ.2095-0837.2016.10143
Citation: WEN Shu-Sheng, CHENG Fang-Yun, ZHONG Yuan, WANG Xin, LI Liu-Zemu, HUANG Nong-Zhang. Protocol for the Micropropagation of Tree Peony (Paeonia × lemoinei ‘High Noon’)[J]. Plant Science Journal, 2016, 34(1): 143-150. DOI: 10.11913/PSJ.2095-0837.2016.10143

Protocol for the Micropropagation of Tree Peony (Paeonia × lemoinei ‘High Noon’)

Funds: 

This work was supported by a grant from the National Science and Technology Support Program of China (2012BAD01B0704).

More Information
  • Received Date: August 20, 2015
  • Available Online: October 31, 2022
  • Published Date: February 27, 2016
  • An efficient micropropagation protocol was developed for Paeonia × lemoinei ‘High Noon’ using axillary buds as explants. During initiation, 13 propagules were obtained after 50 d of culture with WPM + 0.5 mg/L BA + 0.2 mg/L GA3. During proliferation, three shoots were obtained after 35 d of culture with WPM[1668 mg/L Ca(NO3)2·4 H2O] + 0.5 mg/L BA + 0.2 mg/L GA3, and seven subcultures were carried out. For optimal rooting, the shoots were cultured with 1/2 MS (296 mg/L CaCl2) + 0.5 g/L activated charcoal for 20 d, then 1/2 MS (296 mg/L CaCl2) + 1.0 mg/L putrescine + 1.0 mg/L IBA for 30 d for root induction, and finally 1/2 MS (296 mg/L CaCl2) + 4.0 g/L activated charcoal for 20 d for root development. The rooting percentage of the shoots was 77.2%. During acclimatization, the rooted plantlets were transferred to pots containing a mix of vermiculite/peat/perlite (1:1:1 V/V/V) substrate, and the survival rate was 92.1%. The micropropagation protocol for Paeonia × lemoinei ‘High Noon’ established in this study is valuable for commercial use.
  • [1]
    Li SS,Yuan RY,Chen LG,Wang LS,Hao XH,Wang LJ,Zheng XC,Du H. Systematic qualitative and quantitative assessment of fatty acids in the seeds of 60 tree peony(Paeonia section Moutan)cultivars by GC-MS[J]. Food Chem,2015,173(15):133-140.
    [2]
    Cheng FY. Advances in the breeding of tree peonies and a cultivar system for the cultivar group[J]. Int J Plant Breed,2007,1(2):89-104.
    [3]
    George E,Hall M,Klerk G. Micropropagation:uses and methods[M]//George E,Hall M,Klerk G,eds. Plant Propagation by Tissue Culture. Berlin:Springer Publi-shers,2008:29-64.
    [4]
    李玉龙,吴德玉,潘淑龙,徐少丽,卫志明,许智宏,李晓娟. 牡丹试管苗繁殖技术的研究[J]. 科学通报,1984,8(5):500-502.

    Li YL,Wu DY,Pan SL,Xu SL,Wei ZM,Xu ZH,Li XJ. In vitro propagation of Paeonia suffruticosa[J]. Chinese Science Bulletin,1984,8(5):500-502.
    [5]
    Harris RA,Mantell S. Effects of stage Ⅱ subculture durations on the multiplication rate and rooting capacity of micropropagated shoots of tree peony(Paeonia suffruticosa Andr.)[J]. J Hortic Sci,1991,66(1):95-102.
    [6]
    Bouza L,Jacques M,Miginiac E. In vitro propagation of Paeonia suffruticosa Andr. cv.'Mme de Vatry':Develo-pmental effects of exogenous hormones during the multiplication phase[J]. Sci Hortic,1994,57(3):241-251.
    [7]
    孔祥生,张妙霞. 牡丹离体快繁技术研究[J]. 北方园艺,1998,3(4):87-89.
    [8]
    Beruto M,Lanteri L,Portogallo C. Micropropagation of tree peony (Paeonia suffruticosa)[J]. Plant Cell Tiss Organ Cult,2004,79(2):249-255.
    [9]
    Beruto M,Curir P. In vitro culture of tree peony through axillary budding[M]/李萍. 牡丹组织培养的研究[D]. 北京:北京林业大学,2007.

    Li P. Studies on the micropropagation of tree peonies[D]. Beijing:Beijing Forestry University,2007.
    [13]
    张颖星. 牡丹离体快繁及多胺对组培苗生根影响的研究[D]. 北京:北京林业大学,2008.

    Zhang YX. Study on the micropropagation of tree peony and the effect of polyamines on in vitro rooting[D]. Beijing:Beijing Forestry University,2008.
    [14]
    邱金梅. 牡丹离体快繁技术的研究[D]. 北京:北京林业大学,2010.

    Qiu JM. Study on the in vitro micropropagation of tree peony[D]. Beijing:Beijing Forestry University,2010.
    [15]
    Wang HY,He SL,Tanaka M,Van PT,Da Silva JAT. Effect of IBA concentration, carbon source, substrate, and light source on root induction ability of tree peony (Paeonia suffruticosa Andr.) plantlets in vitro[J]. Eur J Hortic Sci,2012, 77(3):122-128.
    [16]
    Qin L,Cheng FY,Zhong Y. Advances in the in vitro culture and micropropagation of tree peonies during the past half century[J]. Acta Hortic,2012,977(3):39-51.
    [17]
    Kessenich G,APS Nomenclature Committee. A. P. Saunders hybrid peonies (Lutea hybrid tree peonies)[M]//Peonies:the History of the Peonies and Their Originations. Washington: American Horticultural Society,1976:146-152.
    [18]
    Bouza L,Sotta B,Bonnet M,Jacques M,Arnaud Y. Hormone content and meristematic activity of Paeonia suffruticosa Andr. cv.'Madame de Vatry' vitroplants during in vitro rooting[J]. Acta Hortic,1992, 320(29):213-216.
    [19]
    Bouza L,Jacques M,Sotta B,Miginiac E. The reactivation of tree peony (Paeonia suffruticosa Andr.) vitroplants by chilling is correlated with modifications of abscisic acid, auxin and cytokinin levels[J]. Plant Sci,1994,97(2):153-160.
    [20]
    Rogers A. Peonies[M]. 5th ed. Oregon:Timber Press,1995:91-105.
    [21]
    Murashige T. Plant propagation through tissue cultures[J]. Ann Rev Plant Physiol,1974,25(1):135-166.
    [22]
    Lloyd G,McCown B. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture[J]. Comb Proc Intl Plant Prop Soc,1980,30:421-427.
    [23]
    Machado MP,da Silva ALL,Biasi LA,Deschamps C,Bespalhok Filho JC,Zanette F. Influence of calcium content of tissue on hyperhydricity and shoot-tip necrosis of in vitro regenerated shoots of Lavandula angustifolia Mill.[J]. Braz Arch Biol Technol,2014,57(5):636-643.
    [24]
    Li P,Cheng FY. Basal medium with modified calcium source and other factors influence on shoots culture of tree peony[J]. Acta Hortic,2008,766:383-389.
    [25]
    Bouza L,Jacques M,Miginiac E. Requirements for in vitro rooting of Paeonia suffruticosa Andr. cv. 'Mme de Vatry'[J]. Sci Hortic,1994,58(3):223-233.
    [26]
    高建明,代真真,杨峰,张世清,陈河龙,郑金龙,易克贤. 抗茎枯病芦笋品种离体培养的研究[J]. 植物科学学报,2013,31(2):158-163.

    Gao JM, Dai ZZ, Yang F, Zhang SQ, Chen, HL, Zheng JL, Yi KX. Regeneration system establishment of disease-resistant asparagus variety[J]. Plant Science Journal, 2013, 31(2):158-163.
    [27]
    秦敏,吴平平,姚明镜. 紫苏不同外植体的培养及再生[J]. 植物科学学报,2013,31(2): 151-157.

    Qin M,Wu PP,Yao MJ. Plant Regeneration from different explants of Perilla frutescens L. Britton[J]. Plant Science Journal, 2013, 31(2):151-157.
    [28]
    姚平,孙书伟. 蓝莓组织培养瓶内复壮瓶外生根快繁技术[J]. 北方园艺,2009(4):161-162.
    [29]
    吴建华,王锦秀. 枸杞新品系0502组织培养快繁技术研究[J]. 宁夏农林科技,2010(3):10-11.
    [30]
    刘敏,苏乔,刘纪文. ‘欧美杨107'组培苗瓶外生根[J]. 植物生理学报,2010(10):1050-1054.

    Liu M, Su Q, Liu JW. Ex vitro rooting of Populus × euramericana cv. Neva microshoots[J]. Plant Physiology Communications, 2010, 46(10) :1050-1054.
    [31]
    Kaur A,Sandhu JS. High throughput in vitro micropropagation of sugarcane (Saccharum officinarum L.) from spi-ndle leaf roll segments: Cost analysis for agri-business industry[J]. Plant Cell Tiss Organ Cult,2015,120(1):339-350.
  • Related Articles

    [1]Yan Jingli, Wang Menghao, Liu Yanyan, Yang Ying, Wang Xufei, Cao Ya'nan. Identification and bioinformatics analysis of the FAD2 gene family in Aralia species[J]. Plant Science Journal, 2024, 42(4): 488-498. DOI: 10.11913/PSJ.2095-0837.23282
    [2]Huang Ying, Zhai Lu, Xie Ling-Li, Xu Jin-Song, Zhang Xue-Kun, Xu Ben-Bo. Genome-wide identification and expression analysis of the MAP70 gene family in Brassica napus L.[J]. Plant Science Journal, 2023, 41(5): 647-656. DOI: 10.11913/PSJ.2095-0837.22245
    [3]Li Cheng-Song, Liu Li-Juan, Liang Fang, Zhao Wei-Dong, Yang Chun-Lin, Liu Ying-Gao. Cloning, prokaryotic expression, and bioinformatics analysis of PaPR10-1 gene from Picea asperata Mast.[J]. Plant Science Journal, 2023, 41(2): 224-233. DOI: 10.11913/PSJ.2095-0837.22140
    [4]Ni Hui, Sun Wei-Hong, Ding Le, Zeng Wei-Wei, Zou Shuang-Quan. Identification and analysis of the WRKY gene family in whole genome of Cinnamomum camphora(L.) Presl.[J]. Plant Science Journal, 2022, 40(4): 513-523. DOI: 10.11913/PSJ.2095-0837.2022.40513
    [5]Qi Tong-Hui, Gao Meng, Yuan Yang-Yang, Li Ming-Jun, Ma Feng-Wang, Ma Bai-Quan. Cloning, expression analysis, and subcellular position of MdPH1 related to acidity in Malus domestica Borkh[J]. Plant Science Journal, 2019, 37(6): 767-774. DOI: 10.11913/PSJ.2095-0837.2019.60767
    [6]Liu Li-Juan, Liu Yu-Feng, Yang Shuai, Liu Ying-Gao. Cloning, expression, and bioinformatics analysis of the chitinase gene PlCHI in Picea likiangensis var. balfouriana[J]. Plant Science Journal, 2019, 37(4): 503-512. DOI: 10.11913/PSJ.2095-0837.2019.40503
    [7]ZHANG Lin, XU De-Lin, CHU Shi-Run, WU Gui-Ying, SHEN Fang, QIAN Gang. Bioinformatic Analysis of Tubulin-beta Gene in Senecio scandens Buch. -Ham. ex D. Don[J]. Plant Science Journal, 2014, 32(5): 487-492. DOI: 10.11913/PSJ.2095-0837.2014.50487
    [8]CAO Yi-Bo, LIU Ya-Jing, ZHANG Ling-Yun. cDNA Cloning and Bioinformatic Analysis of the sPPa1 Gene from Picea wilsonii[J]. Plant Science Journal, 2012, 30(4): 394-401. DOI: 10.3724/SP.J.1142.2012.40394
    [9]He Miao, WU Xue, WANG Zhe-Zhi. Cloning and Bioinformatics Analysis of OsMsr3 Gene from Salvia miltiorrhiza Bunge[J]. Plant Science Journal, 2009, 27(6): 582-588.
    [10]SUN Qing-Ping, WANG Li, YI Ping, ZHU Ying-Guo. Expression Analysis of MADS-box Gene Family on Uni-nucleate and Bi-nucleate Stage Anthers on HL-CMS System[J]. Plant Science Journal, 2002, 20(5): 325-328.

Catalog

    Article views (1199) PDF downloads (1087) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return