Advance Search
ZHOU Wen-Ping, WANG Huai-Qin, GUO Xiao-Rong, YANG Xin-Bing, HUA Wen-Ping, CAO Xiao-Yan. Cloning and Expression Analysis of SmMYC2, a bHLH Transcription Factor Gene from Salvia miltiorrhiza Bunge[J]. Plant Science Journal, 2016, 34(2): 246-254. DOI: 10.11913/PSJ.2095-0837.2016.20246
Citation: ZHOU Wen-Ping, WANG Huai-Qin, GUO Xiao-Rong, YANG Xin-Bing, HUA Wen-Ping, CAO Xiao-Yan. Cloning and Expression Analysis of SmMYC2, a bHLH Transcription Factor Gene from Salvia miltiorrhiza Bunge[J]. Plant Science Journal, 2016, 34(2): 246-254. DOI: 10.11913/PSJ.2095-0837.2016.20246

Cloning and Expression Analysis of SmMYC2, a bHLH Transcription Factor Gene from Salvia miltiorrhiza Bunge

Funds: 

This work was supported by grants from the Natural Science Foundation of Shaanxi Province(2014JQ3107), Fundamental Research Funds for the Central Universities(GK201302043), and Foundation of Shaanxi Xueqian Normal University(2014DS010).

undefined

undefined

More Information
  • Received Date: November 04, 2015
  • Revised Date: December 02, 2015
  • Available Online: October 31, 2022
  • Published Date: April 27, 2016
  • MYC2 is a core transcription factor in the response procedure of jasmonic acid hormones. It plays an important role in regulating plant defense responses, secondary metabolism and growth and development processes. Based on Salvia miltiorrhiza Bunge transcriptomes and genome survey sequences, the MYC2 gene transcription factor in S. miltiorrhiza was cloned and named SmMYC2 (GenBank accession number:KJ945636). The cDNA sequence length of SmMYC2 was 1910 bp with no introns, and the open reading frame (ORF)was 1809 bp, encoding 602 amino acids. Moreover, SmMYC2 contained no membrane-spanning domains or signal peptides, and had high homology with MYC2 of tobacco and tomato. Quantitative real-time PCR analysis showed that SmMYC2 was expressed in the roots, stems, leaves and flowers of S. miltiorrhiza, with the highest levels of expression observed in the roots and stems. In addition, the expression of SmMYC2 could be induced by methyl jasmonate, light and wounding, but could be repressed by gibberellin. The present study will be helpful for further functional research of SmMYC2 in S. miltiorrhiza.
  • [1]
    陈磊, 陆茵, 郑仕中. 丹参药理活性成分的整合效应[J]. 中草药,2009, 40(3):476-479.

    Chen L, Lu Y, Zheng SZ. Integration effect on pharmacological component in Salvia miltiorrhiza[J]. Chinese Traditional and Herbal Drugs, 2009, 40(3):476-479.
    [2]
    葛茜, 邝静, 武玉翠, 张媛, 肖娅萍, 王喆之. 丹参肉桂醇脱氢酶基因(SmCAD)的克隆及表达分析[J]. 植物科学学报, 2013, 31(3):261-268.

    Ge Q, Kuang J, Wu YC, Zhang Y, Xiao YP, Wang ZZ. Cloning and expreesion analysis of cinnamyl alcohol dehydrogenase (SmCAD) gene in Salvia miltiorrhiza Bunge[J]. Plant Science Journal, 2013, 31(3):261-268.
    [3]
    张鑫, 李昆伟, 陈康健, 梁健, 崔浪军. 镉胁迫对丹参生长及有效成分积累的影响研究[J]. 植物科学学报, 2013, 31(6):583-589.

    Zhang X, Li KW, Chen KJ, Liang J, Cui LJ. Effects of cadmium stress on seedlings growth and active ingredie-nts in Salvia miltiorrhiza[J]. Plant Science Journal, 2013, 31(6):583-589.
    [4]
    赵娜, 郭治昕, 赵雪, 赵利斌. 丹参的化学成分与药理作用[J]. 国外药物:植物药分册, 2007, 22(4):155-160.

    Zhao N, Guo ZX, Zhao X, Zhao LB. Chemical composition and pharmacological effects of Salvia miltiorrhiza[J]. World Phytomedicines, 2007, 22(4):155-160.
    [5]
    Zhou LM, Zuo Z,MSS Chow. Danshen:An overview of its chemistry, pharmacology, pharmacokinetics, and clinical use[J]. J Clin Pharmacol, 2005, 45(12):1345-1359.
    [6]
    王庆浩, 陈爱华,张伯礼. 丹参:一种中药研究的模式生物[J]. 中医药学报, 2009, 37(4):1-4.

    Wang QH, Chen AH, Zhang BL. Salvia miltiorrhiza:a model organism for Chinese traditional medicine genomic studies[J]. Acta Chinese Medicine and Pharmacology, 2009, 37(4):1-4.
    [7]
    Pires N, Dolan L. Origin and diversification of basic-helix-loop-helix proteins in plants[J]. Mol Biol Evol, 2010, 27(4):862-874.
    [8]
    Amoutzias GD, Robertson DL, Oliver SG, Bornberg-Bauer E. Convergent evolution of gene networks by single-gene duplications in higher eukaryotes[J]. EMBO Rep, 2004, 5(3):274-279.
    [9]
    Stevens JD, Roalson EH, Skinner MK. Phylogenetic and expression analysis of the basic helix-loop-helix transcription factor gene family:genomic approach to cellular differentiation[J]. Differentiation, 2008, 76(9):1006-1022.
    [10]
    Castillon A, Shen H, Huq E. Phytochrome interacting factors:Central players in phytochrome-mediated light signaling networks[J]. Trends Plant Sci, 2007, 12(11):514-521.
    [11]
    Xiong Y, Liu T, Tian C, Sun S, Li J, Chen M. Transcription factors in rice:a genome-wide comparative analysis between monocots and eudicots[J]. Plant Mol Biol, 2005, 59(1):191-203.
    [12]
    汪琬宜, 蒋喜红, 张利华, 陈平, 申业, 黄璐琦. 丹参转录因子SmbHLH1基因的克隆和表达分析[J]. 中国中药杂志, 2011, 36(24):3416-3420.

    Wang WY, Jiang XH, Zhang LH, Chen P, Shen Y, Huang LQ. Isolation and characteristic of SmbHLH1 gene in Salvia miltiorrhiza[J]. China Journal of Chinese Materia Medica, 2011, 36(24):3416-3420.
    [13]
    周宏骏, 武玉翠, 晋鑫鑫, 饶丽华, 王喆之. 丹参转录因子SmbHLH93的克隆及表达模式分析[J]. 中草药, 2014, 45(23):3449-3455.

    Zhou HJ, Wu YC, Jin XX, Rao LH, Wang ZZ. Cloning and expression pattern analysis of transcription factor SmbHLH93 from Salvia miltiorrhiza[J]. Chinese Traditional and Herbal Drugs, 2014, 45(23):3449-3455.
    [14]
    Zhang X, Luo H, Xu Z, Zhu Y, Ji A, Song J, Chen S. Genome-wide characterisation and analysis of bHLH transcription factors related to tanshinone biosynthesis in Salvia miltiorrhiza[J]. Sci Rep, 2015, 5:11244.
    [15]
    张艳霞, 史玲玲, 戴向辰,刘玉军. 茉莉酸及其衍生物:一类重要的植物次生代谢诱导子[J]. 海南师范大学学报:自然科学版, 2008, 21(3):323-327.

    Zhang YX, Shi LL, Dai XC, Neo CM, Liu YJ. Jasmonic acid and its derivatives:a type of elicitors for plant se-condary metabolisms[J]. Journal of Hainan Normal University:Natural Science, 2008, 21(3):323-327.
    [16]
    Mohamed EO, Taha Abd ER, Luciano R, Abdelbasset EH, Maria Cecilia R, Fouad D, Adrian V, Kamal B. Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato[J]. Plant Cell, 2011, 23(6):2405-2421.
    [17]
    Howe GA, Jander G. Plant immunity to insect herbivores[J]. Annu Rev Plant Biol, 2008, 59(1):41-66.
    [18]
    Chico JM, Chini A, Fonseca S, Solano R. JAZ repressors set the rhythm in jasmonate signaling[J]. Curr Opin Plant Biol, 2008, 11(5):486-494.
    [19]
    Chini A, Boter M, Solano R. Plant oxylipins:COI1/JAZs/MYC2 as the core jasmonic acid-signalling module[J]. Febs J, 2009, 276(17):4682-4692.
    [20]
    Memelink J. Regulation of gene expression by jasmonate hormones[J]. Phytochemistry, 2009, 70(13):1560-1570.
    [21]
    Boter M, Ruíz-Rivero O, Abdeen A, Prat S. Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis[J]. Gene Dev, 2004, 18(13):1577-1591.
    [22]
    Lorenzo O, Chico JM, Sánchez-Serrano JJ, Solano R. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis[J]. Plant Cell, 2004, 16(7):1938-1950.
    [23]
    沈乾, 陆续, 张凌, 高尔娣,唐克轩. 植物中MYC2转录因子功能研究进展[J]. 上海交通大学学报:农业科学版, 2012, 30(6):51-57.

    Shen Q, Lu X, Zhang L, Gao ED, Tang KX. Advances in the studies of MYC2 transcription factor in plants[J]. Journal of Shanghai Jiaotong University:Agricultural Science, 2012, 30(6):51-57.
    [24]
    Guo J, Pang QY, Wang LH, Yu P, Li N, Yan XF. Proteomic identification of MYC2-dependent jasmonate-regulated proteins in Arabidopsis thaliana[J]. Proteome Sci, 2012, 10(1):1-13.
    [25]
    Song SS, Huang H, Gao H, Wang JJ, Wu DW, Liu XL, Yang SH, Zhai QZ, Li CY, Qi TC, Xie DX. Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis[J]. Plant Cell, 2014, 26(1):263-279.
    [26]
    Gupta N, Prasad VBR, Chattopadhyay S. LeMYC2 acts as a negative regulator of blue light mediated photomorphogenic growth, and promotes the growth of adult tomato plants[J]. BMC Plant Biol, 2014, 14(1):1-14.
    [27]
    Woldemariam MG, Dinh ST, Oh Y, Gaquerel E, BaldwinI IT, Galis I. NaMYC2 transcription factor regulates a subset of plant defense responses in Nicotiana attenuata[J]. BMC Plant Biol, 2013, 13:73.
    [28]
    Shoji T, Hashimoto T. Tobacco MYC2 regulates jasmonate-inducible nicotine biosynthesis genes directly and by way of the NIC2-locus ERF genes[J]. Plant Cell Physiol, 2011, 52(6):1117-1130.
    [29]
    Hedhili S, Mattei MVD, Coudert Y, Bourrié I, Bigot Y, Gantet P. Three non-autonomous signals collaborate for nuclear targeting of CrMYC2, a Catharanthus roseus bHLH transcription factor[J]. BMC Res Notes, 2010, 3(1):301.
    [30]
    Pozo MJ, Sjoerd VDE, Loon LCV, Pieterse CMJ. Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana[J]. New Phytol, 2008, 180(2):511-523.
    [31]
    Zander M, Camera SL, Lamotte O, Métraux JP, Gatz C. Arabidopsis thaliana class-Ⅱ TGA transcription factors are essential activators of jasmonic acid/ethylene-induced defense responses[J]. Plant J, 2009, 61(2):200-210.
    [32]
    Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt GP, Sewelam N, Schenk PM, Manners JM, Kazana K. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis[J]. Plant Cell, 2007, 19(7):2225-2245.
    [33]
    Zhang HB, Bokowiec MT, Rushton PJ, Han SC, Timko MP. Tobacco transcription factors NtMYC2a and NtMYC2b form nuclear complexes with the NtJAZ1 repressor and regulate multiple jasmonate-inducible steps in nicotine biosynthesis[J]. Mol Plant, 2012, 5(1):73-84.
    [34]
    Zhang HT, Hedhili S, Montiel G, Zhang YX, Chatel G, Pré M, Gantet P, Memelink J. The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus[J]. Plant J, 2011, 67(1):61-71.
  • Related Articles

    [1]Zhang Cai-Fei, Peng Shuai, Tian Jing, Hu Guang-Wan, Wang Qing-Feng. A new species and a newly recorded species of Impatiens (Balsaminaceae) from Yunnan, China[J]. Plant Science Journal, 2020, 38(4): 437-447. DOI: 10.11913/PSJ.2095-0837.2020.40437
    [2]Liu Wen-Jian, Wang Li-Yan, Wu Lei, Jin Xiao-Hua. Crepidium josephianum, a new record of Orchidaceae from China[J]. Plant Science Journal, 2020, 38(3): 316-319. DOI: 10.11913/PSJ.2095-0837.2020.30316
    [3]Peng Shuai, Hu Guang-Wan, Cong Yi-Yan, Wang Qing-Feng. Impatiens dalaiensis, a newly recorded species of Impatiens from Yunnan, China[J]. Plant Science Journal, 2019, 37(5): 569-571. DOI: 10.11913/PSJ.2095-0837.2019.50569
    [4]LIU Qiang, LI Jian-Wu, YIN Jian-Tao, TAN Yun-Hong, WEN Bin, HUANG Wen, YE De-Ping. Agrostophyllum planicaule,A New Record of Orchidaceae from Yunnan,China[J]. Plant Science Journal, 2012, (3): 299-300. DOI: 10.3724/SP.J.1142.2012.30299
    [5]WANG Yi, WANG Yan. Habenaria anomaliflora,a New Record of Orchidaceae from China[J]. Plant Science Journal, 2010, 28(6): 696-697.
    [6]HU Sheng, LIU Guo-Xiang, ZHOU Guang-Jie, MEI Hong, HU Zheng-Yu. Peridinium polonicum,A New Record of Freshwater Toxic Dinoflagellate from China[J]. Plant Science Journal, 2008, 26(5): 454-457.
    [7]YOU Qing-Min, WANG Quan-Xi. New Records of Pinnularia(Bacillariophyta) from Xinjiang, China[J]. Plant Science Journal, 2007, 25(6): 572-575.
    [8]CHEN Shan, HU Hong-Jun. New Varieties and New Records of Green Flagellates from China(Ⅱ)[J]. Plant Science Journal, 2003, 21(6): 492-496.
    [9]CHEN Shan, HU Hong-Jun. New Species and Records of Green Flagellates from China[J]. Plant Science Journal, 2002, 20(3): 191-198.
    [10]Ma Jilong, LI Yanjun. NEW RECORD OF THE CAREX FROM CHINA[J]. Plant Science Journal, 1998, 16(1): 32-32.
  • Cited by

    Periodical cited type(8)

    1. 师雪淇,程金花,管凝,侯芳,沈子雅. 喀斯特地区典型植被根系对优先流的影响. 水土保持研究. 2024(05): 73-83 .
    2. 庞榆,贺同鑫,孙建飞,宁文彩,裴广廷,胡宝清,王斌. 北热带喀斯特森林优势树种细根生物量估算模型构建. 植物生态学报. 2024(10): 1312-1325 .
    3. 覃桂丽,玉舒中. 降香黄檀根系性状对石灰岩石砾的适应响应. 西南林业大学学报(自然科学). 2023(03): 24-32 .
    4. 吴静,盛茂银,肖海龙,郭超,王霖娇. 西南喀斯特石漠化环境适生植物细根构型及其与细根和根际土壤养分计量特征的相关性. 生态学报. 2022(02): 677-687 .
    5. 林伟山,德科加,向雪梅,钱诗祎,魏希杰,冯廷旭. 天然草地植被-土壤系统碳、氮、磷(钾)库的时空分布格局研究进展. 青海畜牧兽医杂志. 2022(02): 45-51+68 .
    6. 杨慧,宁静,马洋,周孟霞,曹建华. 西南岩溶区植被碳循环研究进展. 广西植物. 2022(06): 903-913 .
    7. 薛建辉,周之栋,吴永波. 喀斯特石漠化山地退化土壤生态修复研究进展. 南京林业大学学报(自然科学版). 2022(06): 135-145 .
    8. 张新生,卢杰. 根系生物量及其对根际生态系统响应的研究进展. 江苏农业科学. 2021(17): 39-45 .

    Other cited types(9)

Catalog

    Article views (1386) PDF downloads (3010) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return