Citation: | Liang Ying-Yi, Pang Xue-Qun, Wang Ting. Mechanism and evolution of fruit type diversity[J]. Plant Science Journal, 2017, 35(6): 912-924. DOI: 10.11913/PSJ.2095-0837.2017.60912 |
[1] |
Lorts CM, Briggeman T, Sang T. Evolution of fruit types and seed dispersal:a phylogenetic and ecological snapshot[J]. J Syst Evol, 2008, 46(3):396-404.
|
[2] |
Eriksson O, Bremer B. Fruit characteristics, life forms, and species richness in the plant family Rubiaceae[J]. Am Nat, 1991, 138(3):751-761.
|
[3] |
Smith JF. High species diversity in fleshy-fruited tropical understory plants[J]. Am Nat, 2001, 157(6):646-653.
|
[4] |
Roth I. Fruits of Angiosperms[M]. Berlin:Schweizerbart and Borntraeger Science Publishers, 1977.
|
[5] |
Fan CC, Wu YD, Yang QY, Yang Y, Meng QW, et al. A novel single-nucleotide mutation in a CLAVATA3 gene homolog controls a multilocular silique trait in Brassica rapa L.[J]. Mol Plant, 2014, 7(12):1788-1792.
|
[6] |
Li S, Pan YP, Wen CL, Li YH, Liu XF, et al. Integrated analysis in bi-parental and natural populations reveals CsCLAVATA3(CsCLV3) underlying carpel number variations in cucumber[J]. Theor Appl Genet, 2016, 129(5):1007-1022.
|
[7] |
Huang ZJ, Houten JV, Gonzalez G, Han X, Knaap EVD. Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato[J]. Mol Genet Genomics, 2013, 288(3-4):111-129.
|
[8] |
Xu C, Liberatore KL, Macalister CA, Huang Z, Chu YH, et al. A cascade of arabinosyltransferases controls shoot meristem size in tomato[J]. Nat Genet, 2015, 47(7):784.
|
[9] |
Li H, Qi MF, Sun MH, Liu Y, Liu YD, et al. Tomato transcription factor SlWUS plays an important role in tomato flower and locule development[J]. Front Plant Sci, 2017, 8:457.
|
[10] |
Li HF, Liang WQ, Yin CS, Zhu L, Zhang DB. Genetic interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in specifying rice floral organ identities and meristem determinacy[J]. Plant Physiol, 2011, 156(1):263.
|
[11] |
Tanaka W, Toriba T, Hirano HY. Three TOB1-related YABBY genes are required to maintain proper function of the spikelet and branch meristems in rice[J]. New Phytol, 2017, 215:1-15.
|
[12] |
Suzaki T, Ohneda M, Toriba T, Yoshida A, Hirano HY. FON2 SPARE1 redundantly regulates floral meristem maintenance with FLORAL ORGAN NUMBER2 in rice[J]. PLoS Genet, 2009, 5(10):e1000693.
|
[13] |
Bommert P, Lunde C, Nardmann J, Vollbrecht E, Running M, et al. Thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase[J]. Development, 2005, 132(6):1235-1245.
|
[14] |
Taguchishiobara F, Yuan Z, Hake S, Jackson D. The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize[J]. Gene Dev, 2001, 15(20):2755-2766.
|
[15] |
Je BI, Gruel J, Lee YK, Bommert P, Arevalo ED, et al. Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits[J]. Nat Genet, 2016, 48(7):785.
|
[16] |
Pautler M, Eveland AL, Larue T, Yang F, Weeks R, et al. FASCIATED EAR4 encodes a bZIP transcription factor that regulates shoot meristem size in maize[J]. Plant Cell, 2015, 27(1):104-120.
|
[17] |
王鑫, 刘仲健, 刘文哲, 张鑫, 郭学民, 等.突破当代植物系统学的困境[J]. 科技导报, 2015, 33(22):97-105.
Wang X, Liu ZJ, Liu WZ, Zhang X, Guo XM, et al. Breaking the stasis of current plant systematics[J]. Science and Technology Review, 2015, 33(22):97-105.
|
[18] |
Gonzalez-Reig S, Ripoll JJ, Vera A, Yanofsky MF, Marti-nez-Laborda A. Antagonistic gene activities determine the formation of pattern elements along the mediolateral axis of the Arabidopsis fruit[J]. PLoS Genet, 2012, 8(11):e100302011.
|
[19] |
Goldshmidt A, Alvarez JP, Bowman JL, Eshed Y. Signals derived from YABBY gene activities in organ primordia regulate growth and partitioning of Arabidopsis shoot apical meristems[J]. Plant Cell, 2008, 20(5):1217-1230.
|
[20] |
Somssich M, Je BI, Simon R, Jackson D. CLAVATA-WUSCHEL signaling in the shoot meristem[J]. Development, 2016, 143(18):3238-3248.
|
[21] |
Landau U, Asis L, Williams LE. The ERECTA, CLAVATA and classⅢ HD-ZIP pathways display synergistic interactions in regulating floral meristem activities[J]. PLoS One, 2015, 10(5):e125408.
|
[22] |
Eldridge T, łangowski Ł, Stacey N, Jantzen F, Moubayidin L, et al. Fruit shape diversity in the Brassicaceae is generated by varying patterns of anisotropy[J]. Development, 2016, 143(18):3394-3406.
|
[23] |
Damodharan S, Zhao D, Arazi T. A common miRNA160-based mechanism regulates ovary patterning, floral organ abscission and lamina outgrowth in tomato[J]. Plant J, 2016, 86(6):458.
|
[24] |
Silva GF, Silva EM, Azevedo MS, Guivin MA, Ramiro DA, et al. MicroRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development[J]. Plant J, 2014, 78(4):604-618.
|
[25] |
Tsaballa A, Pasentsis K, Darzentas N, Tsaftaris AS. Multiple evidence for the role of an Ovate-like gene in determining fruit shape in pepper[J]. BMC Plant Biol, 2011, 11(1):46.
|
[26] |
Xiang J, Liu RQ, Li TM, Han LJ, Zou Y, et al. Isolation and characterization of two VpYABBY genes from wild Chinese Vitis pseudoreticulata[J]. Protoplasma, 2013, 250(6):1315-1325.
|
[27] |
Fernandez L, Torregrosa L, Terrier N, Sreekantan L, Grimplet J, et al. Identification of genes associated with flesh morphogenesis during grapevine fruit development[J]. Plant Mol Biol, 2007, 63(3):307-323.
|
[28] |
Fernandez L, Chaïb J, Martinez-Zapater JM, Thomas MR, Torregrosa L. Mis-expression of a PISTILLATA-like MADS box gene prevents fruit development in grapevine[J]. Plant J, 2013, 73(6):918-928.
|
[29] |
Chialva C, Eichler E, Grissi C, Muñoz C, Gomez-Talquenca S, et al. Expression of grapevine AINTEGUMENTA-like genes is associated with variation in ovary and berry size[J]. Plant Mol Biol, 2016, 91(1-2):67-80.
|
[30] |
Ocarez N, Mejía N. Suppression of the D-class MADS-box AGL11 gene triggers seedlessness in fleshy fruits[J]. Plant Cell Rep, 2016, 35(1):239-254.
|
[31] |
de Folter S, Shchennikova AV, Franken J, Busscher M, Baskar R, et al. A Bsister MADS-box gene involved in ovule and seed development in Petunia and Arabidopsis[J]. Plant J, 2006, 47(6):934-946.
|
[32] |
Orashakova S, Lange M, Lange S, Wege S, Becker A. The CRABS CLAW ortholog from California poppy (Eschscholzia californica, Papaveraceae), EcCRC, is involved in floral meristem termination, gynoecium differen-tiation and ovule initiation[J]. Plant J, 2009, 58(4):682-693.
|
[33] |
Lin YF, Chen YY, Hsiao YY, Shen CY, Hsu JL, et al. Genome-wide identification and characterization of TCP genes involved in ovule development of Phalaenopsis equestris[J]. J Exp Bot, 2016, 67(17):5051-5066.
|
[34] |
Cucinotta M, Colombo L, Roig-Villanova I. Ovule development, a new model for lateral organ formation[J]. Front Plant Sci, 2014, 5(4):117.
|
[35] |
Duszynska D, Mckeown PC, Juenger TE, Geelen D, Spillane C. Gamete fertility and ovule number variation in selfed reciprocal F1 hybrid triploid plants are heritable and display epigenetic parent-of-origin effects[J]. New Phytol, 2013, 198(1):71-81.
|
[36] |
Grini PE, Thorstensen T, Alm V, Vizcaybarrena G, Windju SS, et al. The ASH1 HOMOLOG 2(ASHH2) histone h3 methyltransferase is required for ovule and anther development in Arabidopsis[J]. PLoS One, 2009, 4(11):e7817.
|
[37] |
de Craene LR. Meristic changes in flowering plants:how flowers play with numbers[J]. Flora, 2016, 221:22-37.
|
[38] |
Fletcher JC. The ULTRAPETALA gene controls shoot and floral meristem size in Arabidopsis[J]. Development, 2001, 128(8):1323-1333.
|
[39] |
Jacobsen SE, Running MP, Meyerowitz EM. Disruption of an RNA helicase/RNAseⅢ gene in Arabidopsis causes unregulated cell division in floral meristems[J]. Development, 1999, 126(23):5231-5243.
|
[40] |
Das P, Ito T, Wellmer F, Vernoux T, Dedieu A, et al. Floral stem cell termination involves the direct regulation of AGAMOUS by PERIANTHIA[J]. Development, 2009, 136(10):1605-1611.
|
[41] |
Martín-Trillo M, Cubas P. TCP genes:a family snapshot ten years later[J]. Trends Plant Sci, 2010, 15(1):31-39.
|
[42] |
Sorefan K, Girin T, Liljegren SJ, Ljung K, Robles P, et al. A regulated auxin minimum is required for seed dispersal in Arabidopsis[J]. Nature, 2009, 459(7246):583-586.
|
[43] |
Girin T, Paicu T, Stephenson P, Fuentes S, Koerner E, et al. INDEHISCENT and SPATULA interact to specify carpel and valve margin tissue and thus promote seed dispersal in Arabidopsis[J]. Plant Cell, 2011, 23(10):3641-3653.
|
[44] |
Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis[J]. Nature, 2000, 404(6779):766-770.
|
[45] |
Marsch-Martinez N, Zuniga-Mayo VM, Herrera-Ubaldo H, Ouwerkerk PBF, Pablo-Villa J, et al. The NTT transcription factor promotes replum development in Arabidopsis fruits[J]. Plant J, 2014, 80(1):69-81.
|
[46] |
Ripoll JJ, Bailey LJ, Mai Q, Wu SL, Hon CT, et al. MicroRNA regulation of fruit growth[J]. Nat Plants, 2015, 1:15036.
|
[47] |
Eklund DM, Thelander M, Landberg K, Staldal V, Nilsson A, et al. Homologues of the Arabidopsis thaliana SHI/STY/LRP1 genes control auxin biosynthesis and affect growth and development in the moss Physcomitrella patens[J]. Development, 2010, 137(8):1275-1284.
|
[48] |
Marsch-Martinez N, de Folter S. Hormonal control of the development of the gynoecium[J]. Curr Opin Plant Biol, 2016, 29:104-114.
|
[49] |
Causier B, Castillo R, Zhou JL, Ingram R, Xue YB, et al. Evolution in action:following function in duplicated floral homeotic genes[J]. Curr Biol, 2005, 15(16):1508-1512.
|
[50] |
Fourquin C, Ferrándiz C. Functional analyses of AGAMOUS family members in Nicotiana benthamiana clarify the evolution of early and late roles of C-function genes in eudicots[J]. Plant J, 2012, 71(6):990-1001.
|
[51] |
Heijmans K, Ament K, Rijpkema AS, Zethof J, Wolters-Arts M, et al. Redefining C and D in the Petunia ABC[J]. Plant Cell, 2012, 24(6):2305-2317.
|
[52] |
Fourquin C, Cerro CD, Victoria FC, Vialetteguiraud A, de Oliveira AC, Ferrándiz C. A change in SHATTERPROOF protein lies at the origin of a fruit morphological novelty and a new strategy for seed dispersal in Medicago genus[J]. Plant Physiol, 2013, 162(2):907-917.
|
[53] |
Garceau DC, Batson MK, Pan IL. Variations on a theme in fruit development:the PLE lineage of MADS-box genes in tomato (TAGL1) and other species[J]. Planta, 2017, S:1-9.
|
[54] |
Jaakola L, Poole M, Jones MO, Kamarainen-Karppinen T, Koskimaki JJ, et al. A SQUAMOSA MADS box gene involved in the regulation of anthocyanin accumulation in bilberry fruits[J]. Plant Physiol, 2010, 153(4):1619-1629.
|
[55] |
Tani E, Polidoros AN, Tsaftaris AS. Characterization and expression analysis of FRUITFULL-and SHATTERPROOF-like genes from peach (Prunus persica) and their role in split-pit formation[J]. Tree Physiol, 2007, 27(5):649-659.
|
[56] |
Cevik V, Ryder CD, Popovich A, Manning K, King GJ, Seymour GB. A FRUITFULL-like gene is associated with genetic variation for fruit flesh firmness in apple (Malus domestica Borkh.)[J]. Tree Genet Genomes, 2010, 6(2):271-279.
|
[57] |
Daminato M, Guzzo F, Casadoro G. A SHATTERPROOF-like gene controls ripening in non-climacteric strawberries, and auxin and abscisic acid antagonistically affect its expression[J]. J Exp Bot, 2013, 64(12):3775-3786.
|
[58] |
Pabón-Mora N, Hidalgo O, Gleissberg S, Litt A. Asses-sing duplication and loss of APETALA1/FRUITFULL homologs in Ranunculales[J]. Front Plant Sci, 2013, 4(1):358.
|
[59] |
Yellina AL, Orashakova S, Lange S, Erdmann R, Leebens-Mack J, Becker A. Floral homeotic C function genes repress specific B function genes in the carpel whorl of the basal eudicot California poppy (Eschscholzia californica)[J]. EvoDevo, 2010, 1(1):1-13.
|
[60] |
Hands P, Vosnakis N, Betts D, Irish VF, Drea S. Alternate transcripts of a floral developmental regulator have both distinct and redundant functions in opium poppy[J]. Ann Bot-London, 2011, 107(9):1557-1566.
|
[61] |
Pabón-Mora N, Ambrose BA, Litt A. Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development[J]. Plant Physiol, 2012, 158(4):1685-1704.
|
[62] |
Dai HY, Han GF, Yan YJ, Zhang F, Liu ZC, et al. Transcript assembly and quantification by RNA-Seq reveals differentially expressed genes between soft-endocarp and hard-endocarp hawthorns[J]. PLoS One, 2013, 8(9):e72910.
|
[63] |
Givnish TJ, Millam KC, Mast AR, Paterson TB, Theim TJ, et al. Origin, adaptive radiation and diversification of the Hawaiian lobeliads (Asterales:Campanulaceae)[J]. P Roy Soc B-Biol Sci, 2009, 276(1656):407-416.
|
[64] |
Lagomarsino LP, Antonelli A, Muchhala N, Timmermann A, Mathews S, Davis CC. Phylogeny, classification, and fruit evolution of the species-rich Neotropical bellflowers (Campanulaceae:Lobelioideae)[J]. Am J Bot, 2014, 101(12):2097-2112.
|
[65] |
Eduardo RS, Victoria S. Origin and evolution of fleshy fruit in woody bamboos[J]. Mol Phylogenet Evol, 2015, 91:123-134.
|
[66] |
Stournaras KE, Lo E, Bohning-Gaese K, Cazetta E, Dehling DM, et al. How colorful are fruits? Limited color diversity in fleshy fruits on local and global scales[J]. New Phytol, 2013, 198(2):617-629.
|
[67] |
Chen SC, Cornwell WK, Zhang HX, Moles AT. Plants show more flesh in the tropics:variation in fruit type along latitudinal and climatic gradients[J]. Ecography, 2016, 40(4):531-538.
|
[68] |
王国宏. 地带性木本植物群落功能型的水热分布格局[J]. 林业科学, 2002, 38(1):15-23.
Wang GH. Plant functional types of zonal woody plant communities in relation to hydrothermic factors[J]. Scientia Silvae Sinicae, 2002, 38(1):15-23.
|
[69] |
于顺利, 方伟伟, 张小凤. 北京地区野生植物果实类型谱及沿海拔分布格局[J]. 生态学杂志, 2012, 31(10):2529-2533.
Yu SL, Fang WW, Zhang XF. Fruit type spectra and their altitudinal distribution patterns of wild plants in Beijing[J]. Chinese Journal of Ecology, 2012, 31(10):2529-2533.
|
[70] |
陈学林, 田方, 戚鹏程. 白水江自然保护区植物果实类型组成及垂直分异[J]. 林业科学, 2007, 43(6):61-66.
Chen XL, Tian F, Qi PC. Composition and vertical diffe-rentiation of fruit types in Baishuijiang national nature reserve in Gansu province[J]. Scientia Silvae Sinicae, 2007, 43(6):61-66.
|
[71] |
Encinas-Viso F, Revilla TA, van Velzen E, Etienne RS. Frugivores and cheap fruits make fruiting fruitful[J]. J Evolution Biol, 2014, 27(2):313-324.
|
[72] |
García D, Martínez D. Species richness matters for the quality of ecosystem services:a test using seed dispersal by frugivorous birds[J]. P Roy Soc B-Biol Sci, 2012, 279(1740):3106-3113.
|
[73] |
姚纲, 张连婕, 薛彬娥, 罗世孝. 中国算盘子属(叶下珠科)果实形态特征及其分类学意义[J]. 植物科学学报, 2017, 35(2):139-151.
Yao G, Zhang LJ, Xue BE, Luo SX. Fruit morphology of Chinese Glochidion (Phyllanthaceae) and its taxonomic implications[J]. Plant Science Journal, 2017, 35(2):139-151.
|
[74] |
Beaulieu JM, Donoghue MJ. Fruit evolution and diversification in campanulid angiosperms[J]. Evolution, 2013, 67(11):3132-3144.
|
[1] | Yang Si-Jia, Zhao Yu-Qing, Chen Tao, Yuan Ming. Research progress on plant melatonin biosynthesis[J]. Plant Science Journal, 2021, 39(2): 211-220. DOI: 10.11913/PSJ.2095-0837.2021.20211 |
[2] | Wei Li, Liu Jian-Li. Overview of research on protein subcellular localization in plants[J]. Plant Science Journal, 2021, 39(1): 93-101. DOI: 10.11913/PSJ.2095-0837.2021.10093 |
[3] | Liu Yan-Li, Zhou Yuan, Cao Dan, Ma Lin-Long, Gong Zi-Ming, Jin Xiao-Fang. Application analysis of predictors for plant protein subcellular localization based on proteome data of Camellia sinensis (L.) O. Ktze.[J]. Plant Science Journal, 2020, 38(5): 671-677. DOI: 10.11913/PSJ.2095-0837.2020.50671 |
[4] | Qi Tong-Hui, Gao Meng, Yuan Yang-Yang, Li Ming-Jun, Ma Feng-Wang, Ma Bai-Quan. Cloning, expression analysis, and subcellular position of MdPH1 related to acidity in Malus domestica Borkh[J]. Plant Science Journal, 2019, 37(6): 767-774. DOI: 10.11913/PSJ.2095-0837.2019.60767 |
[5] | Tang Kuan-Gang, Ren Mei-Yan, Zhang Wen-Jun, Pang Xin-Yue, Xue Min, Wang Mao-Yan. Cloning and preliminary functional analysis of AmNAC6 from Ammopiptanthus mongolicus[J]. Plant Science Journal, 2018, 36(5): 705-712. DOI: 10.11913/PSJ.2095-0837.2018.50705 |
[6] | Zhang Hui, Zheng Jie-Xuan, Jian Shu-Guang, Xia Kuai-Fei, Zhang Mei. Isolation and functional characterization of the ASR gene from Ipomoea pes-caprae[J]. Plant Science Journal, 2018, 36(3): 402-410. DOI: 10.11913/PSJ.2095-0837.2018.30402 |
[7] | YANG Li-Xiang, WANG Zheng-Xun, KE De-Sen, WU Jin-Xiong. Subcellular Localization of Arabidopsis Hemoglobin 3[J]. Plant Science Journal, 2010, 28(4): 516-520. |
[8] | CUI Yong-Lan, WANG Peng-Cheng. Study on Subcellular Localization of Two Expressed Proteins in Arabidopsis thaliana[J]. Plant Science Journal, 2009, 27(2): 216-220. |
[9] | ZHANG Yu-Bao, XIE Zhong-Kui, LI Tong-Xiang, WANG Ya-Jun, GUO Zhi-Hong, WANG Zhi-Li. Prokaryotic Expression of DREB1A Transcription Factor[J]. Plant Science Journal, 2007, 25(4): 326-330. |
[10] | LIU Wei-Qun, SHI Yong-Chun, HU Ya-Jie, LIU Qiao-Zhen. The Tolerance to Abiotic Stresses Mediated by DREB-like Transcription Factors in Nicotiana tabacum[J]. Plant Science Journal, 2007, 25(3): 222-225. |