Advance Search
Wang Lu-Yi, Feng Jin-Xia, Chen Zhi-Cheng, Wan Xian-Chong. Differences in physiological characteristics of Populus×euramericana varieties ‘Purui’ and ‘107’ under simulated acid rain stresses[J]. Plant Science Journal, 2018, 36(4): 586-594. DOI: 10.11913/PSJ.2095-0837.2018.40586
Citation: Wang Lu-Yi, Feng Jin-Xia, Chen Zhi-Cheng, Wan Xian-Chong. Differences in physiological characteristics of Populus×euramericana varieties ‘Purui’ and ‘107’ under simulated acid rain stresses[J]. Plant Science Journal, 2018, 36(4): 586-594. DOI: 10.11913/PSJ.2095-0837.2018.40586

Differences in physiological characteristics of Populus×euramericana varieties ‘Purui’ and ‘107’ under simulated acid rain stresses

Funds: 

This work was supported by a grant from the Fundamental Research Funds of Research Institute of Forest New Technology (CAFINT2014K09).

More Information
  • Received Date: January 10, 2018
  • Available Online: October 31, 2022
  • Published Date: August 27, 2018
  • We analyzed changes in the physiological indexes of Populus×euramericana varieties ‘Purui’ and ‘107’ under different degrees of acid rain stresses. The experiment established three different acid rain gradients (CK, moderate stresses, severe stresses). Under severe stresses, the leaf surface of ‘Purui’ showed sporadic dry spots, whereas ‘107’ already showed symptoms under moderate stresses. Under an acid environment, ‘Purui’ exhibited a certain resistance to acid rain and maintained normal growth and photosynthetic capacity after moderate and severe stresses. However, for ‘107’, acid rain caused a significant decrease in photosynthesis, with non-stomatal factors found to be the main reason leading to its decline. Furthermore, acid rain impacted the water balance, especially for ‘107’, but stomatal closure was not the main reason for the decline in photosynthesis intensity. Thus, ‘Purui’ expressed significantly stronger resistance to acid rain than ‘107’.
  • [1]
    高敬. 2016中国环境状况公报[N]. 中国环境报, 2017-06-07(T02).
    [2]
    Rakwal R, Agrawal GK, Kubo A, Yonekura M,Tamogami S. Defense/stress responses elicited in rice seedlings exposed to the gaseous air pollutant sulfur dioxide[J]. Environ Exp Bot, 2003, 49(3):223-235.
    [3]
    Khan MR, Khan MM. Plants response to diseases in sulphur dioxide stressed environment[J]. Plant Pathol, 2011, 10(1):1-12.
    [4]
    Chen J, Wang WH, Wu FH, Zheng HL. Photosynthetic and antioxidant responses of Liquidambar formosana and Schima superba seedings to sulfuric-rich and nitric-rich simulated acid rain[J]. Plant Physiol Biochem, 2013, 64:41-51.
    [5]
    Ebhin MR, Masto RE, Chhonkar PK, Singh D, Patra AK. Changes in soil biological and biochemical characteristics in a long-term field trial on a subtropical inceptisol[J]. Soil Biol Biochem, 2006, 38(7):1577-1582.
    [6]
    Singh A, Agrawal M. Acid rain and its ecological consequences[J]. J Exp Biol, 2007, 29(1):15-24.
    [7]
    唐琨, 朱伟文, 周文新, 易镇邪, 屠乃美. 土壤pH对植物生长发育影响的研究进展[J]. 作物研究, 2013, 27(2):207-212.

    Tang K, Zhu WW, Zhou WX, Yi ZX, Tu NM.Research progress on effects of soil pH on plant growth and deve-lopment[J].Crop Research, 2013, 27(2):207-212.
    [8]
    杨启良, 张富仓, 刘小刚, 王玺, 张楠, 戈振扬. 植物水分传输过程中的调控机制研究进展[J]. 生态学报, 2011, 31(15):4427-4436.

    Yang QL, Zhang FC, Liu XG, Wang X, Zhang N, Ge ZY. Research progress on regulation mechanism for the process of water transport in plants[J]. Acta Ecologica Sinica, 2011, 31(15):4427-4436.
    [9]
    张翠萍, 孟平, 李建中, 万贤崇. 磷元素和土壤酸化交互作用对核桃幼苗光合特性的影响[J]. 植物生态学报, 2014, 38(12):1345-1355.

    Zhang CP, Meng P, Li JZ, Wan XC. Interactive effects of soil acidification and phosphorus deficiency on photosynthetic characteristics and growth in Juglans regia seedlings[J]. Chinese Journal of Plant Ecology, 2014, 38(12):1345-1355.
    [10]
    万贤崇, 张存义, 冯锦霞, 白坤栋, 程国华, 张兆欣. 杨树抗硫新品种‘普瑞’[J]. 林业科学, 2012, 48(12):160.

    Wan XC, Zhang CY, Feng JX, Bai KD, Cheng GH, Zhang ZX. A new poplar variety ‘Purui’ of resistant to SO2[J]. Scientia Silvae Sinicae, 2012, 48(12):160.
    [11]
    张胜楠. 模拟酸雨的不同喷淋方式对小白菜的生长、生理及营养品质[D]. 长春:吉林大学, 2012.
    [12]
    Rohácek K. Chlorophyll fluorescence parameters:the defi-nitions, photosynthetic meaning, and mutual relationships[J]. Photosynthetica, 2002, 40(1):13-29.
    [13]
    Scholander PF, Hammel HT, Bradstreet EA, Bradstreet ED. Sap pressure in vascular plants[J]. Science, 1965, 148(3668):339-346.
    [14]
    Sperry JS, Donnelly JR, Tyree MT. A method for measu-ring hydraulic conductivity and embolism in xylem[J]. Plant Cell Environ, 1988, 11(1):35-40.
    [15]
    靳欣, 徐洁, 白坤栋, 冯锦霞, 张劲松, 万贤崇. 从水分结构比较3种共存木本植物的抗旱策略[J]. 北京林业大学学报, 2011, 33(6):135-141.

    Jin X, Xu J, Bai KD, Feng JX, Zhang JS, Wan XC. Comparison of drought strategies of three co-existing woody plants by their hydraulic structures[J]. Journal of Beijing Forestry University, 2011, 33(6):135-141.
    [16]
    Wan XC, Zwiazek JJ. Mercuric chloride effects on root water transport in aspen seedlings[J]. Plant Physiol, 1999, 121(3):939-946.
    [17]
    郭建荣. 木本植物银腺杨根压及其昼夜周期与影响因素的研究[D]. 北京:中国林业科学研究院, 2016.
    [18]
    中国科学院上海植物生理研究所, 上海市植物生理学会编. 现代植物生理学实验指南[M]. 北京:科学出版社, 1999.
    [19]
    Yoshida K, Shibasaki R, Takami CR. Response of gas exchange rates in Abies firma seedlings to various additional stresses under acid fog stress[J]. J Forestry Res, 2004, 9(3):195-203.
    [20]
    董莲春, 俞飞, 刘美华, 余树全, 汪赛, 伊力塔. 不同酸雨梯度下3种酸雨处理对茶树幼苗叶绿素荧光和光合特性的影响[J].环境科学学报, 2016, 36(9):3495-3504.

    Dong LC, Yu F, Liu MH, Yu SQ, Wang S, Yi LT. Effects of three kinds of acid rain treatments on chlorophyll fluorescence and photosynthetic characteristics of Camellia sinensis under different acid rain gradients[J]. Acta Scientiae Circumstantiae, 2016, 36(9):3495-3504.
    [21]
    邱栋梁, 刘星辉, 郭素枝. 模拟酸雨对龙眼叶片气体交换及叶绿素荧光参数的影响[J]. 植物生态学报, 2002, 26(4):441-446.

    Qiu DL, Liu XH, Guo SZ. Effects of simulated acid rain stress on gas exchange and chlorophyll a fluoreacence parameters in leaves of longan[J]. Acta Phytoecologica Sinica, 2002, 26(4):441-446.
    [22]
    马博英, 徐礼根, 蒋德安. 模拟酸雨对假俭草叶绿素荧光特性的影响[J]. 林业科学, 2006, 11(11):8-11.

    Ma BY, Xu LG, Jiang DA. Effects of simulated acid rain on chlorophyll fluorescence characteristics in Eremochloa ophiuroides[J] Scientia Silvae Sinicae, 2006, 11(11):8-11.
    [23]
    徐洁, 白坤栋, 万贤崇, 程国华, 张存义, 张兆欣. 欧美杨107杨抗硫无性系的变异及其抗氧化保护系统对SO2响应[J]. 林业科学, 2011, 47(2):66-71.

    Xu J, Bai KD, Wan XC, Cheng GH, Zhang CY, Zhang ZX. Responses of poplar (Populus×euramericana cv. ‘74/76’) SO2-resistant clone to SO2 fumigation and the variation in antioxidant systems[J]. Scientia silvae sinicae, 2011, 47(2):66-71.
    [24]
    Sofo A, Dichio B, Montanaro G, Xiloyannis C. Photosynthetic performance and light response of two olive cultivars under different water and light regimes[J]. Photosynthetica, 2009, 47(4):602-608.
    [25]
    陶巧静, 付涛, 项锡娜, 李波, 吴月燕, 周伟军. 模拟酸雨对西洋杜鹃生理生态特性的影响[J]. 生态学报, 2014, 34(8):2020-2027.

    Tao QJ, Fu T, Xiang XN, Li B, Wu YY, Zhou WJ. Effects of simulated acid rain on the physiological and ecological characteristics of Rhododendron hybridum[J]. Acta Ecologica Sinica, 2014, 34(8):2020-2027.
    [26]
    Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis[J]. Annu Rev Plant Physiol, 1982, 33:317-345.
    [27]
    蒋达波, 宗秀虹, 李帮秀, 宗学凤, 王三根. 氮素胁迫对玉米光合及叶绿素荧光参数的影响[J]. 西南师范大学学报:自然科学版, 2015, 40(1):135-139.

    Jiang DB, Zong XH, Li BX, Zong XF, Wang SG. Effects of nitrogen stress on photosynthesis and chlorophyll fluorescence of maize[J]. Journal of Southwest Chain Normal University:Natural Science Edition, 2015, 40(1):135-139.
    [28]
    Farias ME, Martinazzo EG, Bacarin MA. Chlorophyll fluorescence in the evaluation of photosynthetic electron transport chain inhibitors in the pea[J]. Revista Ciência Agronomica, 2016, 47(1):633-643.
    [29]
    Randewig D, Hamisch D, Eiblmeier M, Boedecker C, Kreuzwieser J, et al. Oxidation and reduction of sulfite contribute to susceptibility and detoxification of SO2 in Populus×canescens leaves[J]. Trees, 2014, 28:399-411.
    [30]
    Maxwell K, Johnson GN. Chlorophyll fluorescence-a practical guide[J]. J Exp Bot, 2000, 51(345):659-668.
    [31]
    Santiago LS, Goldstein G, Meinzer FC, Fisher JB, Machado K, et al. Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees[J]. Oecologia, 2004, 140(4):543-550.
    [32]
    Tyree MT. The ascent of water[J]. Nature, 2003, 423(26):923.
    [33]
    万贤崇, 孟平. 植物体内长距离运输的生理生态学机制[J]. 植物生态学报, 2007, 31(5):804-813.

    Wan XC, Meng P. Physiological and ecological mechanisms of long-distance water transport in plants:a review of recent issues[J]. Acta Phytoecologica Sinica, 2007, 31(5):804-813.
    [34]
    代永欣, 王林, 万贤崇. 干旱导致树木死亡机制研究进展[J]. 生态学杂志, 2015, 34(11):3228-3236.

    Dai YX, Wang L, Wan XC.Progress on researches of drought-induced tree mortality mechanisms[J]. Chinese Journal of Ecology, 2015, 34(11):3228-3236.
  • Related Articles

    [1]Yuan Jun, Sheng Sha-Sha, Liu Rong-Peng, Wang Xiao-Yun. Effects of cadmium on physiological characteristics and metabolic profiles of Salvia miltiorrhiza Bunge[J]. Plant Science Journal, 2022, 40(3): 408-417. DOI: 10.11913/PSJ.2095-0837.2022.30408
    [2]Guo Lu-Yao, Miao Ling-Feng, Li Da-Dong, Xiang Li-Shan, Yang Fan. Effects of nitrogen addition and warming on growth, development, and physiological characteristics of Dalbergia odorifera T. Chen seedlings[J]. Plant Science Journal, 2022, 40(2): 259-268. DOI: 10.11913/PSJ.2095-0837.2022.20259
    [3]Dai Huan-Huan, Shan Yu-Si, Xin Zheng-Qi, He Xiao, Wu Neng-Biao. Effects of exogenous betaine on physiological characteristics and tropidine alkaloid content in Atropa belladonna L. under NaCl stress[J]. Plant Science Journal, 2020, 38(3): 400-409. DOI: 10.11913/PSJ.2095-0837.2020.30400
    [4]Pu Yu-Jin, Zhang Li-Jia, Miao Ling-Feng, Yang Fan. Effects of different calcium concentrations on the growth and physiological characteristics of Dalbergia odorifera under low temperatures[J]. Plant Science Journal, 2019, 37(2): 251-259. DOI: 10.11913/PSJ.2095-0837.2019.20251
    [5]Fu Xiao-Feng, Wang Li-Shan, Zhu Yuan, Xu Qian, Wang Ling-Hui, Teng Wei-Chao. Effects of different fertilization treatments on the growth and physiological characteristics of Horsfieldia hainanensis Merr. Seedlings[J]. Plant Science Journal, 2018, 36(2): 273-281. DOI: 10.11913/PSJ.2095-0837.2018.20273
    [6]DONG Xue, GAO Yong, YU Yi, YANG Yong-Hua, BAO Jin-Gang, SUN Yan-Nan, ZHA Qi-Qi-Ge. Effect of Stubble Treatment on the Physiological Characteristics of Ammopiptanthus mongolicus[J]. Plant Science Journal, 2015, 33(3): 388-395. DOI: 10.11913/PSJ.2095-0837.2015.30388
    [7]YUAN Ju-Hong, HU Mian-Hao. Effect of EDDS Treatments on FTIR-ATR, SEM-EDXS Features and Physiological Characteristics of Coleus blumei Roots under Se Stress[J]. Plant Science Journal, 2014, 32(6): 620-629. DOI: 10.11913/PSJ.2095-0837.2014.60620
    [8]LUO Hai-Jing, ZHANG Yong-Qing, SHI Yan-Hua, LI Xin, ZHANG Yao-Wen. Effects of Drought Stress on the Physiological Characteristics of Different Adzuki Bean Varieties at the Seedling Stage[J]. Plant Science Journal, 2014, 32(5): 493-501. DOI: 10.11913/PSJ.2095-0837.2014.50493
    [9]ZHONG Xue-Hua, YANG Wan-Nian, LÜYing-Tang. Comparative Research on Some Physiological Characteristics of Tobacco and Rape under Flooding Stress[J]. Plant Science Journal, 2002, 20(5): 395-398.
    [10]Xu Guohua, Chen Weipei, Wei Jincheng, Shi Guoxin. AN ANATOMICAL AND PHYSIOLOGICAL STUDY ON THE LEAVES OF WINTER BUDS OF BRASENIA SCHREBERI GMEL.[J]. Plant Science Journal, 1999, 17(2): 97-100.
  • Cited by

    Periodical cited type(3)

    1. 王凯,陶兴梅,李小琴,谯祖勤,刘朝,张永福. 三叶木通叶片解剖结构和生理特征对酸雨胁迫的响应和钛的缓解效应. 热带亚热带植物学报. 2025(01): 15-24 .
    2. 刘伶利,李学松,刘争,乐洪志,杨怀,琚煜熙,方若龙,张涛. 模拟酸雨对青钱柳幼苗的生理作用. 信阳师范学院学报(自然科学版). 2021(03): 452-456 .
    3. 荣立苹,张佳奇,赵东辉,陈家硕,刘继生,周燕,高玉福. 模拟酸雨对元宝枫幼苗生理及叶绿素荧光参数的影响. 经济林研究. 2019(03): 44-51 .

    Other cited types(0)

Catalog

    Article views (632) PDF downloads (647) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return