Advance Search
Li Rui, Lu Ming-Zhu, Liu Nian, Xiong Ya-Cen, Li Jing. Biological effects of carbon quantum dots on model plant Arabidopsis thaliana[J]. Plant Science Journal, 2019, 37(2): 240-250. DOI: 10.11913/PSJ.2095-0837.2019.20240
Citation: Li Rui, Lu Ming-Zhu, Liu Nian, Xiong Ya-Cen, Li Jing. Biological effects of carbon quantum dots on model plant Arabidopsis thaliana[J]. Plant Science Journal, 2019, 37(2): 240-250. DOI: 10.11913/PSJ.2095-0837.2019.20240

Biological effects of carbon quantum dots on model plant Arabidopsis thaliana

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31700262), Fundamental Research Funds for the Central Universities (2018IVB042, 2018HSB105), and Start-up Funding for Overseas Talents in Wuhan University of Technology (40120180).

More Information
  • Received Date: September 09, 2018
  • Revised Date: February 21, 2019
  • Available Online: October 31, 2022
  • Published Date: April 27, 2019
  • Based on the model plant Arabidopsis thaliana (L.) Heynh, we studied the biological effects of carbon quantum dots (CQDs), a new nanomaterial, and investigated their distribution and transportation, effects on growth and development, photosynthetic pigment content, oxidative stress, and stress-related gene expression levels in A. thaliana. Results showed that CQDs could be absorbed by the roots of A. thaliana and transported continuously to the leaves, which had no significant effect on seed germination rate, but significantly promoted the growth of seedling roots and plant weight. With the increase in CQD concentration, the pigment content in the chloroplast of seedlings decreased significantly, whereas the content of proline and malondialdehyde increased at first and then decreased. Superoxide dismutase (SOD) and catalase (CAT) played a leading role in the antioxidant enzyme system, and showed increasing and then decreasing activity as CQD concentration increased. The accumulation of endogenous hydrogen peroxide (H2O2) in leaves also indicated that CQDs could induce oxidative stress with concentration-dependent effects. Sulfur assimilation and stress-related genes were down-regulated after CQD treatment, which might be related to the characteristics of the CQD particles themselves. These results are of great significance for exploration of the molecular mechanisms of the bio-effects of nanomaterials on plants and for evaluating their biosafety.
  • [1]
    Yang ST,Wang X,Wang H, Lu F,Luo PG, et al. Carbon dots as nontoxic and high-performance fluorescence imaging agents[J]. J Phys Chem C, 2009, 113(42):18110-18114.
    [2]
    闫鹏, 艾凡荣, 严喜鸾, 刘东雷. 碳量子点的生物应用:成像、载药与毒性[J].材料导报, 2017, 31(19):35-42.

    Yan P, Ai FR, Yan XL, Liu DL. Biological applications of carbon quantim dots:bioimaging, drug delivery and toxicity[J]. Materials Review, 2017, 31(19):35-42.
    [3]
    郑广强, 吕小慧, 朱小山, 姚琨, 蔡中华. 碳量子点的生物毒性研究进展[J]. 中国科学:化学, 2017, 47(10):1070-1078. Zheng GQ, Lü XH, Zhu XS, Yao K, Cai ZH. Research progress in toxicity of carbon quantum dots[J]. Scientia Sinica Chimica, 2017, 47(10):1170-1178.
    [4]
    Tripathi S, Sarkar S. Influence of water soluble carbon dots on the growth of wheat plant[J]. Appl Nanosci, 2015, 5(5):609-616.
    [5]
    Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC. Carbon nanomaterials in agriculture:A critical review[J]. Front Plant Sci, 2016, 7(1770):172.
    [6]
    Wang HB, Zhang ML, Song YX, Li H, Huang H, et al. Carbon dots promote the growth and photosynthesis of mung bean sprouts[J]. Carbon, 2018, 136:94-102.
    [7]
    Chen J, Dou R, Yang Z, Wang X, Mao C, et al. The effect and fate of water-soluble carbon nanodots in maize (Zea mays L.)[J]. Nanotoxicology, 2016, 10(6):818-828.
    [8]
    Liu JH, Yang ST, Chen XX, Wang H. Fluorescent carbon dots and nanodiamonds for biological imaging:preparation, application, pharmacokinetics and toxicity[J]. Curr Drug Metab, 2012, 13(8):1046-1056.
    [9]
    Yan Z, Chen J, Xiao A, Shu J, Chen J. Effects of representative quantum dots on microorganisms and phytoplankton:a comparative study[J]. Rsc Adv, 2015, 5(129):106406-106412.
    [10]
    Xiao A, Wang C, Chen J, Guo R, Yan Z, Chen J. Carbon and metal quantum dots toxicity on the microalgae Chlorella pyrenoidosa[J]. Ecotox Environ Safe, 2016, 133:211-217.
    [11]
    祝沛平. 用于基因组分析的模式植物拟南芥[J]. 生命世界, 2000, 6:35.

    Zhu PP. Model plant Arabidopsis thaliana for genomic analysis[J]. Life World, 2000, 6:35.
    [12]
    Liu H, Ma C, Chen G, White JC, Xing B, Dhankher OP. Titanium dioxide nanoparticles alleviate tetracycline toxicity to Arabidopsis thaliana[J]. Acs Sustain Chem Eng, 2017, 5(4):3204-3213.
    [13]
    Lim SY, Shen W, Gao Z. Carbon quantum dots and their applications[J]. Chem Soc Rev, 2015, 44(1):362-81.
    [14]
    李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社, 2000.
    [15]
    Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies[J]. Plant Soil, 1973, 39(1):205-207.
    [16]
    Ramírez V, Coego A, López A, Agorio A, Flors V, Vera P. Drought tolerance in Arabidopsis is controlled by the OCP3 disease resistance regulator[J]. Plant J, 2009, 58(4):578-591.
    [17]
    Giannopolitis CN, Ries SK. Superoxide dismutases:Ⅰ. Occurrence in higher plants[J]. Plant Physiol, 1977, 59(2):309-314.
    [18]
    Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves[J]. Plant Physiol, 1992, 98(4):1222.
    [19]
    张亚宏, 孙万仓, 魏文慧, 武军艳, 曾军, 等. 自交对甘蓝型油菜叶片SOD, CAT, APX活性的影响[J]. 华北农学报, 2008, 23(1):105-108.

    Zhang YH, Sun WC, Wei WH, Wu JY, Zeng J, et al. Change of SOD, CAT and APX of Brassica napus infected by selfing in total growth period[J]. Acta Agriculturae Boreali-Sinica, 2008, 23(1):105-108.
    [20]
    张国民, 徐丽梅. 苗期低温对玉米叶绿素含量及生长发育的影响[J]. 黑龙江农业科学, 2000(1):10-12.

    Zhang GM, Xu LM, The effect of low temperature on chlorophyll content and growth of Maize at seedling stage[J]. Heilongjiang Agricultural Sciences, 2000(1):10-12.
    [21]
    彭凌涛, 王江, 李琳, 安林升, 张景六. 水稻谷氨酰半胱氨酸合成酶基因的结构和表达分析[J]. 植物生理与分子生物学学报, 2004, 30(5):533-540.

    Peng LT, Wang J, Li L, An LS, Zhang JL. Structure and expression analysis of the gama-glutamylcysteine synthetase gene in rice[J]. Journal of Plant Physiology and Molecular Biology, 2004, 30(5):533-540.
    [22]
    Ali MB, Hahn EJ, Paek KY. Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis[J]. Plant Physiol Bioch, 2005, 43(3):213-223.
    [23]
    Asada K. The role of ascorbate peroxidase and monodehydroascorbate reductase in H2O2 scavenging in plants[J]. CSH Perspect Biol, 1997, 34:715-735.
    [24]
    Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, et al. Uptake and distribution of ultra-small anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana[J]. Nano Lett, 2010, 10(7):2296-2302.
    [25]
    Carpita N, Sabularse D, Montezinos D, Delmer DP. Determination of the pore size of cell walls of living plant cells[J]. Science, 1979, 205(4411):1144-1147.
    [26]
    Sabo-Attwood T, Unrine JM, Stone JW, Murphy CJ, Ghoshroy S, et al. Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotianax anthi) seedlings[J]. Nanotoxicology, 2011, 6(4):353-360.
    [27]
    Canas JE, Long M, Nations S, Vandan R, Dai L, et al. Effects of functionalized and non-functionalized single-walled carbon nanotubes on root elongation of select crop species[J]. Eviron Toxicol Chem, 2008, 27(9):1922-1931.
    [28]
    Khodakovskaya MV, De SK, Nedosekin DA, Dervishi E, Biris AS, et al. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions[J]. Proc Natl Acad Sci USA, 2011, 108(3):1028-1033.
    [29]
    兰丽贞, 赵群芬, 金凯星. 环境中纳米TiO2对拟南芥生长及相关基因表达的影响[J]. 核农学报, 2018, 32(2):389-398.

    Lan LZ, Zhao QF, Jin KX. Effects of nano-TiO2 on growth and gene expression in Arabidopsis thaliana[J]. Acta Agriculturae Nucleatae Sinica, 2018, 32(2):389-398.
    [30]
    Matile P, Hortensteiner S, Thomas H, Krautler B. Chlorophyll breakdown in senescent leaves[J]. Plant Physiol, 1996, 112(4):1403-1409.
    [31]
    Ursache-Oprisan M, Foca-Nici E, Cirlescu A, Caltun O, Creanga D. Oleate coated magnetic cores based on magnetite, Zn ferrite and Co ferrite nanoparticles-preparation, physical characterization and biological impact on Helianthus annuus photosynthesis[J]. AIP Conference Proceedings, 2010, 1311(1):425-430.
    [32]
    Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-shinozaki K, Shinozaki K. Regulation of levels of proline as an osmolyte in plants under water stress[J]. Plant Cell Physiol, 1997, 38(10):1095-1102.
    [33]
    Szabados L, Savouré A. Proline:a multifunctional amino acid[J]. Trends Plant Sci, 2010, 15(2):89-97.
    [34]
    Weismann D, Hartvigsen K, Lauer N, Bennett KL, Scholl HP, et al. Complement factor H binds malondialdehyde epitopes and protects from oxidative stress[J]. Nature, 2011, 478(7367):76-81.
    [35]
    赵风斌, 王丽卿, 季高华. 盐胁迫对3种沉水植物生物学指标及叶片中丙二醛含量的影响[J]. 环境污染与防治, 2012, 34(10):40-44.

    Zhao FB, Wang LQ, Ji GH. Effects of NaCl stress on plant biology indicators and MDA content of 3 submerged plants[J]. Environ Pollution and Control, 2012, 34(10):40-44.
    [36]
    杨舒贻, 陈晓阳, 惠文凯, 任颖, 马玲. 逆境胁迫下植物抗氧化酶系统响应研究进展[J]. 福建农林大学学报, 2016, 45(5):481-489.

    Yang SY, Chen XY, Hui WK, Ren Y, Ma L. Progress in responses of antioxidant enzyme systems in plant to environmental stresses[J]. Journal of Fujian Agriculture and Forestry University, 2016, 45(5):481-489.
    [37]
    Cakmak I, Horst WJ. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max)[J]. Physiol Plantarum, 1991, 83(3):463-468.
    [38]
    白英俊, 李国瑞, 黄凤兰. 活性氧与植物抗氧化系统研究进展[J]. 安徽农业科学, 2017, 45(36):1-3.

    Bai YJ, Li GR, Huang FL. Research progress of reactive oxygen species and plant antioxidant system[J]. Journal of Anhui Agricultural Sciences, 2017, 45(36):1-3.
    [39]
    杜琳, 张荃. 植物谷胱甘肽与抗氧化胁迫[J]. 山东科学, 2008, 21(2):27-32.

    Du L, Zhang Q. Glutathione and oxidative stress tolerance of plants[J]. Shandong Science, 2008, 21(2):27-32.
    [40]
    王玮玮, 唐亮, 周文龙. 谷胱甘肽生物合成及代谢相关酶的研究进展[J]. 中国生物工程杂志, 2014, 34(7):89-95.

    Wang WW, Tang L, Zhou WL. Progress in the biosynthesis and metabolism of glutathione[J]. Journal of Chinese Biotechnology, 2014, 34(7):89-95.
    [41]
    Landa P, Vankova R, Andrlova J, Hodek J, Marsik P, et al. Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot[J]. J Hazard Mater, 2012, 241:55-62.
    [42]
    Kaveh R, Li YS, Ranjbar S, Tehrani R, Brueck CL, Van Aken B. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions[J]. Environ Sci Tech, 2013, 47(18):10637-10644.
    [43]
    Ma C, Chhikara S, Xing B, Musante C, White J, Dhankher O. Physiological and molecular response of Arabidopsis thaliana to nanoparticle cerium and indium oxide exposure[J]. Acs Sustain Chem En, 2013, 1(7):768-778.
  • Related Articles

    [1]Sun Peng-Fei, Shen Ya-Fei, Wang Li-Jun, Chen Tian, Zhang Meng, Xiao Wen-Fa, Cheng Rui-Mei. Effects of nitrogen addition and ectomycorrhizal fungi on growth and photosynthetic characteristics of Pinus massoniana Lamb. seedlings[J]. Plant Science Journal, 2023, 41(1): 112-120. DOI: 10.11913/PSJ.2095-0837.22113
    [2]ZHOU Meng-Li, ZHANG Qing, KANG Xin-Gang, GUO Wei-Wei, JI Lei, LI Cheng-Fu. Study on the Stability of Forest Communities Based on the Spatial Structure Index[J]. Plant Science Journal, 2016, 34(5): 724-733. DOI: 10.11913/PSJ.2095-0837.2016.50724
    [3]ZHU Hua, WANG Hong, LI Bao-Gui, ZHOU Shi-Shun, ZHANG Jian-Hou. Studies on the Forest Vegetation of Xishuangbanna[J]. Plant Science Journal, 2015, 33(5): 641-726. DOI: 10.11913/PSJ-2095-0837.2015.50641
    [4]XU Zhang-Hua, LIU Jian, YU Kun-Yong, GONG Cong-Hong, TANG Meng-Ya, XIE Wan-Jun, LAI Ri-Wen, LI Zeng-Lu. Response of Pinus massoniana Leaf Area Index (LAI) to Climate Indicators in Fujian Province[J]. Plant Science Journal, 2013, 31(2): 114-123. DOI: 10.3724/SP.J.1142.2013.20114
    [5]CHEN Ling, SU Pei-Pei, TONG Han-Wen, LIU Yi-Ke, ZHU Zhan-Wang, YANG Guang-Xiao, GAO Chun-Bao, HE Guang-Yuan. Isolation of the Promoter Region of a Pollen-specific Gene PSG076 by Inverse-PCR[J]. Plant Science Journal, 2012, (3): 309-314. DOI: 10.3724/SP.J.1142.2012.30309
    [6]DOU Xiao-Lin, LI Ming, WANG Wei-Bo, ZHANG Quan-Fa, CHENG Xiao-Li. Changes in Soil Nutrients in Different Eroded Soils in Pinus massoniana Forest Ecosystems in Fujian Province,China[J]. Plant Science Journal, 2012, (2): 161-168. DOI: 10.3724/SP.J.1142.2012.20161
    [7]LI Shu-Jing, LI Deng-Wu, QIN Ting-Song, LIU Yu. Dynamics of Species Composition and Regeneration Rules in the Gaps of Pinus bungeana forest Gaps in Huanglong Mountain,Shaanxi Province[J]. Plant Science Journal, 2010, 28(5): 583-588.
    [8]Xu Jin, Chen Tianhua, Wang Zhangrong. STUDY ON CHROMOSOME FLUORESCENT BANDING PATTERN IN PINUS MASSONIANA[J]. Plant Science Journal, 1998, 16(2): 167-170.
    [9]Tang Wei, Ouyang Fan, Guo Zhongchen. SOMATIC EMBRYOGENESIS FROM PROTOPLASTS OF LOBLOLLY PINE[J]. Plant Science Journal, 1998, 16(2): 106-110.
    [10]He Jixing. COMPARISON OF KARYOTYPES OF TWO MASSONS PINES FROM GUANGXI AND GUIZHOU[J]. Plant Science Journal, 1985, 3(4): 461-462.
  • Cited by

    Periodical cited type(1)

    1. 陈忠海,刘泰龙,陈飞飞,吴玄峰,赵宁,刘星. 青藏高原水毛茛基于转录组测序的SSR和SNP特征分析. 环境生态学. 2021(11): 53-58 .

    Other cited types(4)

Catalog

    Article views (974) PDF downloads (842) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return