Advance Search
Zheng Wei-Yan, Cao Kun-Fang. Potential geographical distribution of five Lithocarpus species in China and their response to climate change[J]. Plant Science Journal, 2019, 37(4): 474-484. DOI: 10.11913/PSJ.2095-0837.2019.40474
Citation: Zheng Wei-Yan, Cao Kun-Fang. Potential geographical distribution of five Lithocarpus species in China and their response to climate change[J]. Plant Science Journal, 2019, 37(4): 474-484. DOI: 10.11913/PSJ.2095-0837.2019.40474

Potential geographical distribution of five Lithocarpus species in China and their response to climate change

Funds: 

This work was supported by grants from the National Key Research and Development Program (2016YFC0502101-04), Guangxi Key Research and Development Program (AB16380254), and Guangxi ‘Bagui Scholar’ Talent Project (C33600992001).

More Information
  • Received Date: January 01, 2019
  • Revised Date: January 23, 2019
  • Available Online: October 31, 2022
  • Published Date: August 27, 2019
  • In this paper, the maximum entropy model (Maxent) and geographic information system (ArcGIS 10.3) software were used to quantitatively model the suitable distribution of five economically valuable Lithocarpus species in China and to predict their future distribution under two different climate scenarios. Results showed that L. litseifolius (Hance) Chun. was widely distributed south of the Huaihe River in the Qinling Mountains of China, whereas L. brevicaudatus (Skan) Hay. was mainly distributed in the central and eastern subtropical regions of China. Under future climate (2061-2080) scenarios (RCP 2.6 and RCP 8.5), the suitable distribution areas for L. litseifolius decreased by 5.1% and 3.0%, respectively, whereas those for L. brevicaudatus increased by 0.5% and 1.5%, respectively. Results also showed that L. dealbatus (Hook. f. et Thoms. ex DC.) Rehd. was mainly distributed in northern Yunnan and southern Sichuan, whereas L. corneus (Lour.) Rehd. was mainly distributed in the southern subtropical regions of Guangdong and Guangxi. Under the RCP 2.6 and RCP 8.5 scenarios, the suitable distribution areas for L. dealbatus decreased by 12.1% and 3.5% and for L. corneus decreased by 17.8% and 15.9%, respectively. In addition, L. elizabethae (Tutch.) Rehd. was mainly distributed in Guangxi and under the RCP 2.6 and RCP 8.5 scenarios, suitable distribution area increased by 7.3% and 6.3%, respectively. Thus, based on differences in geographical distribution, these sympatric tree species exhibited different distribution responses to future climatic change. By predicting the distribution of potential suitable areas of the five Lithocarpus species under different climate change scenarios, this study provides strategic guidance for their future protection and utilization.
  • [1]
    Boisvert-Marsh L, Catherine Périé, Blois SD. Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes[J]. Ecosphere, 2014, 5(7):art83.
    [2]
    Veloz SD, Williams JW, Blois JL, He F, Otto-Bliesner B, et al. No-analog climates and shifting realized niches during the late quaternary:implications for 21st-century predictions by species distribution models[J]. Glob Change Biol, 2012, 18(5):1698-1713.
    [3]
    Thuiller W, Lavergne S, Roquet C, Boulangeat I, Lafourcade B, et al. Consequences of climate change on the tree of life in Europe[J]. Nature, 2011, 470(7335):531-534.
    [4]
    Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F. Impacts of climate change on the future of biodiversity[J]. Ecol Lett, 2012, 15(4):365-377.
    [5]
    Allen SK, Plattner GK, Nauels A, Xia Y, Stocker TF. Climate Change 2013:the physical science basis. An overview of the working group 1 contribution to the fifth assessment report of the intergovernmental panel on climate change (IPCC)[J]. Comput Geom, 2007, 18(2):95-123.
    [6]
    Frich P, Alexander L, Della-Marta P, Gleason B, Haylock M, et al. Observed coherent changes in climatic extremes during the second half of the twentieth century[J]. Climate Res, 2002, 19(3):193-212.
    [7]
    胡宜昌, 董文杰, 何勇. 21世纪初极端天气气候事件研究进展[J]. 地球科学进展, 2007, 22(10):1066-1075.

    Hu YC, Dong WJ, He Y. Progress of the study of extreme weather and climate events at the beginning of the twenty first century[J]. Advances in Earth Science, 2007, 22(10):1066-1075.
    [8]
    翟盘茂, 刘静. 气候变暖背景下的极端天气气候事件与防灾减灾[J]. 中国工程科学, 2012, 14(9):55-63.

    Zhai PM, Liu J. Extreme weather and climate events under the background of climate warming and disaster prevention and mitigation[J]. Engineering Sciences, 2012, 14(9):55-63.
    [9]
    Gelviz-Gelvez SM, Pavón NP, Illoldi-Rangel P, Balleste-ros-Barrera C. Ecological niche modeling under climate change to select shrubs for ecological restoration in central Mexico[J]. Ecol Eng, 2015, 74:302-309.
    [10]
    Moor H, Hylander K, Norberg J. Predicting climate change effects on wetland ecosystem services using species distribution modeling and plant functional traits[J]. Ambio, 2015, 44(1):113-126.
    [11]
    Phillips SJ, Dudik M, Elith J, Graham CH, Lehmann A, et al. Sample selection bias and presence-only distribution models:implications for background and pseudo-absence data[J]. Ecol Appl, 2009, 19(1):181-197.
    [12]
    Mccarty JP. Ecological consequences of recent climate change[J]. Conserv Biol, 2001, 15(2):320-331.
    [13]
    李垚, 张兴旺, 方炎明. 气候变暖对中国栓皮栎地理分布格局影响的预测[J]. 应用生态学报, 2014, 25(12):3381-3389.

    Li Y, Zhang XX, Fang YM. Predicting the impact of global warming on the geographical distribution pattern of Quercus variabilis in China[J]. Chinese Journal of Applied Ecology, 2014, 25(12):3381-3389.
    [14]
    刘勤, 王玉宽, 彭培好, 逯亚峰, 陈颖锋, 等. 气候变化下四川省物种的分布规律及迁移特征[J]. 山地学报, 2016, 34(6):716-723.

    Liu Q, Wang YK, Peng PH, Lu YF, Chen YF, et al. Distribution and migration characteristics of species in Sichuan province under climate change[J]. Mountain Research, 2016, 34(6):716-723.
    [15]
    应凌霄, 刘晔, 陈绍田. 气候变化情景下基于最大熵模型的中国西南地区清香木潜在分布格局模拟[J]. 生物多样性, 2016, 24(4):453-461.

    Ying LX, Liu Y, Chen ST. Simulation of the potential range of Pistacia weinmannifolia in southwest China with climate change based on the maximum-entropy (Maxent) model[J]. Biodiversity Science, 2016, 24(4):453-461.
    [16]
    Kremerl A, Casasoli M, Barreneche T, Bodenes C, Sisco P, et al. Fagaceae trees[M]//Kole C, ed. Forest Trees. Berlin:Springer-Verlag, 2007:161-187.
    [17]
    Manos PS, Stanford AM. The historical biogeography of Fagaceae:Tracking the tertiary history of temperate and subtropical forests of the northern hemisphere[J]. Int J Plant Sci, 2001, 162(S6):18-27.
    [18]
    许瑾. 壳斗科植物在我国城市园林绿化中的应用现状及前景[J]. 现代园艺, 2013(9):37-38.

    Xu J. Application status and prospect of Fagaceae plants in urban landscape greening in China[J]. Xiandai Horticulture, 2013(9):37-38.
    [19]
    周伟, 吴宝成, 宋春凤, 刘启新. 中国柯属(壳斗科)植物资源与开发利用[J]. 中国野生植物资源, 2016, 35(4):60-62.

    Zhou W, Wu BC, Song CC, Liu QX. Resources and exploitation of Lithocarpus (Fagaceae) in China[J]. Chinese Wild Plant Resources, 2016, 35(4):60-62.
    [20]
    关心怡, 石慰, 曹坤芳. 未来气候变化对广布种麻栎地理分布的影响和主导气候因子分析[J]. 热带亚热带植物学报, 2018, 26(6):105-112.

    Guan XY, Shi W, Cao KF. Effect of climate change in future on geographical distribution of widespread Quercus acutissima and analysis of dominant climatic factors[J]. Journal of Tropical and Subtropical Botany, 2018, 26(6):105-112.
    [21]
    王雷宏, 杨俊仙, 徐小牛. 基于MaxEnt分析金钱松适生的生物气候特征[J]. 林业科学, 2015, 51(1):127-131.

    Wang LH, Yang JX, Xu XN. Analysis of suitable bioclima-tic characteristics of Pseudolarix amabilis by using MaxEnt model[J]. Scientia Silvae Sinicae, 2015, 51(1):127-131.
    [22]
    Wang YS, Xie BY, Wan FH, Xiao QM, Dai LY. Application of ROC curve analysis in evaluating the performance of alien species' potential distribution models[J]. Biodivers Sci, 2007, 15(4):365-372.
    [23]
    Wang XH, Kent M, Fang XF. Evergreen broad-leaved forest in Eastern China:Its ecology and conservation and the importance of resprouting in forest restoration[J]. Forest Ecol Manage, 2007, 245(1/3):76-87.
    [24]
    郑维艳, 曾文豪, 唐一思, 石慰, 曹坤芳. 中国大陆北热带及亚热带地区樟科、壳斗科物种多样性及其生物地理格局分析[J]. 生态学报, 2018, 38(24):15-26.

    Zheng WY, Zeng WH, Tang YS, Shi W, Cao KF. Species diversity and biogeographical patterns of Lauraceae and Fagaceae in northern tropical and subtropical regions of China[J]. Acta Ecologica Sinica, 2018, 38(24):15-26.
    [25]
    López-Pujol J, Zhang FM, Sun HQ, Ying TS, Ge S. Centres of plant endemism in China:places for survival or for speciation?[J]. J Biogeogr, 2011, 38(7):1267-1280.
    [26]
    Qiu YX, Fu CX, Comes HP. Plant molecular phylogeography in China and adjacent regions:Tracing the genetic imprints of Quaternary climate and environmental change in the world's most diverse temperate flora[J]. Mol Phylogenet Evol, 2011, 59(1):225-244.
    [27]
    张华, 黄建平. 对IPCC第五次评估报告关于人为和自然辐射强迫的解读[J]. 气候变化研究进展, 2014, 10(1):40-44.

    Zhang H, Huang JP. Interpretation of anthropogenic and natural radiation forcing in the IPCC fifth assessment report[J]. Progressus Inquisitiones De Mutatione Climatis, 2014, 10(1):40-44.
    [28]
    陈红. 长江中下游夏季极端降水事件频次的统计降尺度模拟与预估[J]. 长江流域资源与环境, 2017, 26(5):126-132.

    Chen H. Statistical downscaling simulation and estimation of the frequency of summer extreme precipitation events in the middle and lower reaches of the Yangtze River[J]. Resources and Environment in the Yangtze Basin, 2017, 26(5):126-132.
    [29]
    Xu CH, Xu Y. The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble[J]. Atmos Ocean Sci Lett, 2012, 5(6):527-533.
    [30]
    Jiang DB, Tian ZP. Eastern Asian monsoon change for the 21st century:results of CMIP3 and CMIP5 models[J]. Chin Sci Bull, 2013, 58(12):1427-1435.
    [31]
    韩乐琼, 韩哲, 李双林. 不同代表性浓度路径(RCPs)下21世纪长江中下游强降水预估[J]. 大气科学学报, 2014, 37(5):529-540 Han LQ, Han Z, Li SL. Prediction of heavy rainfall events in the middle and lower reaches of the Yangtze River in the 21st century under different representative concentration pathways[J]. Transactions of Atmospheric Sciences, 2014, 37(5):529-540.
    [32]
    胡理乐, 张海英, 秦岭, 闫伯前. 中国五味子分布范围及气候变化影响预测[J]. 应用生态学报, 2012, 23(9):2445-2450.

    Hu LL, Zhang HY, Qin L, Yan BQ. Current distribution of Schisandra chinensis in China and its predicted responses to climate change[J]. Chinese Journal of Applied Ecology, 2012, 23(9):2445-2450.
    [33]
    赵宗慈, 罗勇, 江滢, 徐影. 全球和中国降水、旱涝变化的检测评估[J]. 科技导报, 2008, 26(6):28-33.

    Zhao ZC, Luo Y, Jiang Y, Xu Y. Assessment and prediction of precipitation and droughts/floods changes over the world and in China[J]. Science Technology Review, 2008, 26(6):28-33.
    [34]
    黄晓莹, 温之平, 杜尧东, 许吟隆. 华南地区未来地面温度和降水变化的情景分析[J]. 热带气象学报, 2008, 24(3):254-258.

    Huang XY, Wen ZP, Du YD, Xu YL. Scenario analysis on the changes of future surface air temperature and precipitation in South China[J]. Journal of Tropical Meteorology, 2008, 24(3):254-258.
    [35]
    苏文华, 金白杨, 张光飞. 滇石栎种子萌发特性的研究[J]. 云南林业科技, 2001(2):21-23.

    Su WH, Jin BY, Zhang GF. Study on germination characteristics of Lithocarpus dealbatus seed[J]. Yunnan Forest Science Technology, 2001(2):21-23.
    [36]
    Wen Y, Qin DW, Leng B, Zhu YF, Cao KF. The physiological cold tolerance of warm-climate plants is correlated with their latitudinal range limit[J]. Biol Lett, 2018, 14:20180277.
    [37]
    Iverson LR, Prasad AM, Matthews SN, Peters M. Estimating potential habitat for 134 eastern US tree species under six climate scenarios[J]. Forest Ecol Manage, 2008, 254(3):390-406.
    [38]
    Mckenney DW, Pedlar JH, Lawrence K, Campbell K, Hutchinson MF. Potential impacts of climate change on the distribution of north American trees[J]. BioScience, 2007, 57(11):939-948.
    [39]
    Mckenney DW, Pedlar JH, Rood RB, Price D. Revisiting projected shifts in the climate envelopes of north American trees using updated general circulation models[J]. Glob Change Biol, 2011, 17(8):2720-2730.
    [40]
    Zwieniecki MA, Secchi F. Threats to xylem hydraulic function of trees under ‘new climate normal’ conditions[J]. Plant Cell Environ, 2015, 38(9):1713-1724.
    [41]
    赵平, 孙谷畴, 倪广艳, 曾小平. 成熟马占相思水力导度对水分利用和光合响应的季节性差异[J]. 应用生态学报, 2013, 24(1):49-56.

    Zhao P, Sun GC, Ni GY, Zeng XP. Seasonal differences in the leaf hydraulic conductance of mature Acacia man-gium in response to its leaf water use and photosynthesis[J]. Chinese Journal of Applied Ecology, 2013, 24(1):49-56.
    [42]
    刘晓东, 程志刚, 张冉. 青藏高原未来30~50年A1B情景下气候变化预估[J]. 高原气象, 2009, 28(3):475-484.

    Liu XD, Cheng ZG, Zhang R. The A1B scenario projection for climate change over Tibetan Plateau in the next 30-50 years[J]. Plateau Meteorology, 2009, 28(3):475-484.
    [43]
    胡芩, 姜大膀, 范广洲. 青藏高原未来气候变化预估:CMIP5模式结果[J]. 大气科学, 2015, 39(2):260-270.

    Hu Q, Jiang DP, Fan GZ. Climate change projection on the Tibetan Plateau:results of CMIP5 models[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(2):260-270.
    [44]
    Li XH, Tian HD, Wang Y, Li RQ, Song ZM, et al. Vulnerability of 208 endemic or endangered species in China to the effects of climate change[J]. Reg Environ Chang, 2013, 13(4):843-852.
  • Related Articles

    [1]Zhu Meng-Jie, Miao Jia, Zhao Xue-Li. Simulation of potential distribution of Uraria in China based on maximum entropy model[J]. Plant Science Journal, 2020, 38(4): 476-482. DOI: 10.11913/PSJ.2095-0837.2020.40476
    [2]Zou Xu, Peng Ye, Wang Lu, Li Yao, Zhang Wang-Xiang, Liu Xue. Impact of climate change on the distribution pattern of Malus baccata (L.) Borkh. in China since the Last Glacial Maximum[J]. Plant Science Journal, 2018, 36(5): 676-686. DOI: 10.11913/PSJ.2095-0837.2018.50676
    [3]Yan Jing, Yan Xiao-Ling, Wang Zhang-Hua, Li Hui-Ru, Ma Jin-Shuang. Distribution pattern and rating of alien invasive plants in Anhui Province[J]. Plant Science Journal, 2017, 35(5): 679-690. DOI: 10.11913/PSJ.2095-0837.2017.50679
    [4]XUE Jian-Hua, XUE Zhi-Qing, WANG Ri-Xin, Rubtsova TA, Pshennikova LM, GUO Yu-Min. Distribution Pattern and Morphological Diversity of Trapa L. in the Heilong and Tumen River Basin[J]. Plant Science Journal, 2016, 34(4): 506-520. DOI: 10.11913/PSJ.2095-0837.2016.40506
    [5]WU Jian-Guo. Potential Effects of Climate Change on the Distribution of Seven Protected Plants in China[J]. Plant Science Journal, 2010, 28(4): 437-452.
    [6]SHI Xiao-Dong, HAN You-Zhi. Population Structure and Distribution Pattern of Cold Temperate Coniferous Forest in the Pangquangou National Nature Reserve[J]. Plant Science Journal, 2008, 26(5): 489-494.
    [7]LIANG Shi-Chu. Fractal Characteristics of Distribution Pattern of Carpinus pubescens Population[J]. Plant Science Journal, 2001, 19(4): 263-268.
    [8]Jin Zexin. ON DOMINANT POPULATION STRUCTURE AND DISTRIBUTION PATTERN OF YUKENG FOREST COMMUNITY IN XIANJU OF ZHEJIANG[J]. Plant Science Journal, 2000, 18(5): 383-389.
    [9]Zheng Fengying, Zhang Jintun, Shangguan Tieliang, Zhang Feng. THE DISTRIBUTION PATTERNS OF PAEONIA SUFFRUTICOSA VAR. SPONTANEA AND THE QUANTITY ANALYSIS OF THE COMMUNITIES WHERE IT GROWS[J]. Plant Science Journal, 1998, 16(3): 255-262.
    [10]Ma Shaobin, Hu Zhihao. PRELIMINARY STUDIES ON THE DISTRIBUTION PATTERN AND ECOLOGICAL ADAPTATION OF SINOPODOPHYLLUM HEXANDRUM (ROYLE) YING (BERBERIDACEAE)[J]. Plant Science Journal, 1996, 14(1): 47-54.
  • Cited by

    Periodical cited type(11)

    1. 李林霞,何兰君,席磊,冯子航,欧光龙. 中国南方松林地理替代分布规律及其气候主导因子研究. 西南林业大学学报(自然科学). 2024(01): 97-105 .
    2. 何兰君,李林霞,欧光龙. 基于标志种分布预测的哀牢山植被潜在分布及气候解释研究. 西南林业大学学报(自然科学). 2024(03): 52-60 .
    3. 谢婧妍,贺晓慧,朱丽,郝瑞敏. 气候变化背景下云南沙棘在中国的潜在地理分布. 防护林科技. 2023(01): 24-29 .
    4. 赵鹏霞,杨旭,杨志玲,田朝霞,羊奕珣. 基于腊叶标本分析的木姜叶柯表型性状变异及地理分化研究. 江西农业大学学报. 2023(02): 285-297 .
    5. 周安晟,成彦丽,陈鸿,徐晨,张远兵. 基于MaxEnt模型预测含笑在中国的潜在适生区. 安徽科技学院学报. 2023(06): 19-27 .
    6. 唐梦,陈静,杨灵懿,贾翔,刘济铭,段劼. 气候变化下中国主要生物燃油树种分布与变迁. 生态学报. 2023(24): 10156-10170 .
    7. 缪菁,王勇,王璐,许晓岗. 基于MaxEnt模型的苦槠潜在地理分布格局变迁预测. 南京林业大学学报(自然科学版). 2021(03): 193-198 .
    8. 覃元艺,陈曦. 石栎属物种果实类型及其系统演化研究进展. 云南民族大学学报(自然科学版). 2021(04): 311-320 .
    9. 陈禹衡,陆双飞,毛岭峰. 黄檀属珍稀树种未来适宜区变化预测. 浙江农林大学学报. 2021(04): 837-845 .
    10. 张晓龙,邓童,罗乐,李进宇. 单叶蔷薇潜在适宜区预测及其渐危机制研究. 西北植物学报. 2021(09): 1570-1582 .
    11. 李响,张成福,贺帅,王雨晴,苗林. MaxEnt模型综合应用研究进展分析. 绿色科技. 2020(14): 14-17 .

    Other cited types(4)

Catalog

    Article views (728) PDF downloads (653) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return