Advance Search
Liu Hai-Tao, Wang Xi, Liu Ling, Gao Yan-Hua, Mu Dan-Ping, Chen Yu-Di. Effects of carboxylated multi-walled carbon nanotubes, mixed salt, and their combination on physiological characteristics of Oryza sativa seedlings[J]. Plant Science Journal, 2019, 37(4): 540-550. DOI: 10.11913/PSJ.2095-0837.2019.40540
Citation: Liu Hai-Tao, Wang Xi, Liu Ling, Gao Yan-Hua, Mu Dan-Ping, Chen Yu-Di. Effects of carboxylated multi-walled carbon nanotubes, mixed salt, and their combination on physiological characteristics of Oryza sativa seedlings[J]. Plant Science Journal, 2019, 37(4): 540-550. DOI: 10.11913/PSJ.2095-0837.2019.40540

Effects of carboxylated multi-walled carbon nanotubes, mixed salt, and their combination on physiological characteristics of Oryza sativa seedlings

Funds: 

This work was supported by grants from the Natural Science Foundation of Anhui Province (1608085QC50), Program for Outstanding Young Talents in the University of Anhui Province (gxyq2019078), Domestic or Foreign Visiting and Studying Key Program of the Young and Middle-Aged Backbone Teachers for Higher Education Institutions from the Education Bureau of Anhui Province (gxfxZD2016202), Science and Technology Program of Huainan City(2018A29), and Science Research Foundation for Doctors of Huainan Normal University (51306).

More Information
  • Received Date: January 07, 2019
  • Revised Date: January 20, 2019
  • Available Online: October 31, 2022
  • Published Date: August 27, 2019
  • Rice (Oryza sativa L.) seedlings were hydroponically cultivated in different concentrations of carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) (0, 2.5, 5.0, and 10.0 mg/L), 50 mmol/L mixed salt (1NaCl:9Na2SO4:9NaHCO3:1Na2CO3), and mixed salt + MWCNTs-COOH for 10 d, respectively. Several physiological and biochemical parameters were then determined to investigate the phytotoxicity and ecotoxicological risks of MWCNTs-COOH and joint exposure with mixed salt on the seedling leaves. Results showed that reactive oxygen species (ROS), including superoxide radical (O2·-) and hydrogen peroxide (H2O2), were induced non-significantly by single MWCNTs-COOH treatment compared with the control. However, O2·- and H2O2 were overproduced in the mixed salt treatment group and in the combined treatment group. Mixed salt combined with MWCNTs-COOH aggravated the accumulation of O2·- and H2O2, with obvious concentration effects. As signaling molecules, ROS enhanced, at least to some extent, the total activities of antioxidant enzymes (i.e., SOD, CAT, POD, and APX) in the different treatment groups. The contents of chlorophyll-a and carotene somewhat increased under low concentration combined treatment compared with mixed salt treatment. After combination with mixed salt, the synthesis of soluble sugar and proline were inhibited, whereas the relative electrical conductivity and production of malondialdehyde (MDA) were significantly enhanced. The increased activity of antioxidant enzymes and production of chlorophyll-a and carotene are likely crucial defense mechanisms, which are beneficial for the alleviation of oxidative stress and damage, as well as for the maintenance of photosynthetic electron transport and thermal dissipation of excessive light energy in O. sativa seedlings. This study demonstrated that single MWCNTs-COOH treatment caused a certain level of oxidative stress and defense response in the leaves of O. sativa seedlings; furthermore, combined MWCNTs-COOH and mixed salt treatment aggravated oxidative stress and damage.
  • [1]
    Deinlein U, Stephan AB, Horie T, Luo W, Xu GH, Schroeder JI. Plant salt-tolerance mechanisms[J]. Trends Plant Sci, 2014, 19(6):371-379.
    [2]
    Zhu JK. Plant salt tolerance[J]. Trends Plant Sci, 2001, 6(2):66-71.
    [3]
    沈婧丽, 王彬, 田小萍, 许兴. 不同改良模式对盐碱地土壤理化性质及水稻产量的影响[J]. 江苏农业学报, 2016, 32(2):338-344.

    Shen JL, Wang B, Tian XP, Xu X. Effect of improvement modes on physic-chemical characteristics of saline-alkali soil and rice yield[J]. Jiangsu Journal of Agriculture Sciences, 2016, 32(2):338-344.
    [4]
    田富强. 产量红线与耕地红线耦合研究[J]. 干旱区地理, 2017, 40(3):640-646.

    Tian FQ. Coupling of yield red-line and cultivated land red-line[J]. Arid Land Geography, 2017, 40(3):640-646.
    [5]
    张婷婷, 杨美英, 王春红, 孙合美, 齐春艳, 侯立刚, 武志海. 盐胁迫下不同水稻品种渗透调节物质及相关基因的变化[J]. 西北农林科技大学学报(自然科学版), 2016, 44(4):39-47.

    Zhang TT, Yang MY, Wang CH, Sun HM, Qi CY, Hou LG, Wu ZH. Changes in osmolytes and related genes of different rice varieties under saline-alkali stress[J]. Journal of Northwest A & F University (Natural Science Edition), 2016, 44(4):39-47.
    [6]
    凌启鸿. 盐碱地种稻有关问题的讨论[J]. 中国稻米, 2018, 24(4):1-2.

    Ling QH. Discussion on the related problems of rice plan-ting in saline-alkali soil[J]. China Rice, 2018, 24(4):1-2.
    [7]
    Kibria MG, Hossain M, Murata Y, Hoque MD. Antioxidant defense mechanisms of salinity tolerance in rice genotypes[J]. Rice Sci, 2017, 24(3):155-162.
    [8]
    董起广, 何振嘉, 高红贝, 雷娜, 樊建琼. 沿黄地区盐碱地种植水稻土壤理化性质的比较[J]. 植物资源与环境学报, 2017, 26(2):110-112.

    Dong QG, He ZJ, Gao HB, Lei N, Fan JQ. Comparison on soil physicochemical properties of saline and alkaline land planted with Oryza sativa in the area along the Yellow River[J]. Journal of Plant Resources and Environment, 2017, 26(2):110-112.
    [9]
    De Volder MF, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes:present and future commercial applications[J]. Science, 2013, 339(6119):535-539.
    [10]
    Petersen EJ, Zhang L, Mattison NT, O'Carroll DM, Whelton AJ, Uddin N, et al. Potential release pathways, environmental fate, and ecological risks of carbon nanotubes[J]. Environ Sci Technol, 2011, 45(23):9837-9856.
    [11]
    [12]
    Sohn EK, Chung YS, Johari SA, Kim TG, Kim JK, Lee JH, et al. Acute toxicity comparison of single-walled carbon nanotubes in various freshwater organisms[J]. Biomed Res Int, 2015, 2015(1):1-7.
    [13]
    Tan XM, Lin C, Fugetsu B. Study on toxicity of multi-walled carbon nanotubes on suspension rice cells[J]. Carbon, 2009, 47(15):3479-3487.
    [14]
    杨帆, 王志春, 马红媛, 杨福, 田春杰, 安丰华. 东北苏打盐碱地生态治理关键技术研发与集成示范[J]. 生态学报, 2016, 36(22):7054-7058.

    Yang F, Wang ZC, Ma HY, Yang F, Tian CJ, An FH. Research and integrated demonstration of ecological amelioration techniques of saline-sodic land in northeast China[J]. Acta Ecologica Sinica, 2016, 36(22):7054-7058.
    [15]
    Ghosh M, Bhadra S, Adegoke A, Bandyopadhyay M, Adegoke OA. MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation[J]. Mutat Res, 2015, 774:49-58.
    [16]
    Hao Y, Ma CX, Zhang ZT, Song YH, Cao WD, Guo J, et al. Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem[J]. Environ Pollut, 2018, 232:123-136.
    [17]
    Yoshida S, Forno DA, Cock JH, Gomez KA. Laboratory Manual for Physiological Studies of Rice[M]. 3th ed. Laguna:The International Rice Research Institute, 1976:62.
    [18]
    Tian M, Gu Q, Zhu M. The involvement of hydrogen peroxide and antioxidant enzymes in the process of shoot organogenesis of strawberry callus[J]. Plant Sci, 2003, 165:701-707.
    [19]
    Velikova V, Yordanov I, Edreva A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants:Protective role of exogenous polyamines[J]. Plant Sci, 2000, 151:59-66.
    [20]
    Giannopolitis CN, Ries SK. Superoxide dismutases:Ⅰ. Occurrence in higher plants[J]. Plant Physiol, 1977, 59(2):309-314.
    [21]
    Giannopolitis CN, Ries SK. Superoxide dismutases:Ⅱ. Purification and quantitative relationship with water-soluble protein in seedings[J]. Plant Physiol, 1977, 59(2):315-318.
    [22]
    Abei H. Catalase in vitro[J]. Method Enzymol, 1984, 105(13):121-126.
    [23]
    李合生, 孙群, 赵世杰, 章文华. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社, 2003:164-165, 194-197, 258-260.
    [24]
    张以顺, 黄霞, 陈云凤. 植物生理学实验教程[M]. 北京:高等教育出版社, 2009:34-37, 135-136.
    [25]
    赵世杰, 史国安, 董新纯. 植物生理学实验指导[M]. 北京:中国农业科学技术出版社, 2002:130-131.
    [26]
    Li Y, Zhang SS, Jiang WS, Liu DH. Cadmium accumulation, activities of antioxidant enzyme, and malondialdehyde (MDA) content in Pistia stratiotes L.[J]. Environ Sci Pollut R, 2013, 20(2):1117-1123.
    [27]
    何光明, 邓兴旺. 死亡信号传递:叶绿体与线粒体间信号交流调控植物程序性细胞死亡[J]. 植物学报, 2018, 53(4):441-444.

    He GM, Deng XW. Death signal transduction:chloroplast-to-mitochondrion communication regulates programmed cell death in plants[J]. Chinese Bulletin of Botany, 2018, 53(4):441-444.
    [28]
    Hossain MA, Bhattacharjee S, Armin SM, Qian PP, Xin W, Li HY, et al. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance:insights from ROS detoxification and scavenging[J]. Front Plant Sci, 2015, 6(420):1-42.
    [29]
    庄绪亮. 土壤复合污染的联合修复技术研究进展[J]. 生态学报, 2007, 27(11):4871-4876.

    Zhuang XL. New approaches for remediation of soils with multiple pollutants[J]. Acta Ecologica Sinica, 2007, 27(11):4871-4876.
    [30]
    Rong H, Wang CR, Yu XR, Fan JB, Jiang P, Wang YC, et al. Carboxylated multi-walled carbon nanotubes exacerbated oxidative damage in roots of Vicia faba L. seedlings under combined stress of lead and cadmium[J]. Ecotox Environ Safe, 2018, 161:616-623.
    [31]
    Wang CR, Liu HT, Chen JY, Tian Y, Shi J, Li DD, et al. Carboxylated multi-walled carbon nanotubes aggravated biochemical and subcellular damages in leaves of broad bean (Vicia faba L.) seedling under combined stress of lead and cadmium[J]. J Hazard Mater, 2014, 274:404-412.
    [32]
    Tripathy BC, Oelmüller R. Reactive oxygen species gen-eration and signaling in plants[J]. Plant Signal Behav, 2012, 7(12):1621-1633.
    [33]
    李格, 孟小庆, 蔡敬, 董婷婷, 李宗芸, 朱明库. 活性氧在植物非生物胁迫响应中功能的研究进展[J]. 植物生理学报, 2018, 54(6):951-959.

    Li G, Meng XQ, Cai J, Dong TT, Li ZY, Zhu MK. Advance in the function of reactive oxygen species in plant responses to abiotic stresses[J]. Plant Physiology Journal, 2018, 54(6):951-959.
    [34]
    薛盈文, 黄寿光, 范博文, 石新新, 阚虎飞, 刘鑫, 等. 低温和UV-B复合胁迫对小麦幼苗抗氧化酶和渗透调节物质的影响[J]. 麦类作物学报, 2017, 37(6):834-840.

    Xue YW, Huang SG, Fan BW, Shi XX, Kan HF, Liu X, et al. Effect of low temperature and UV-B on the antioxidant enzymes and osmotic substances in wheat seedlings[J]. Journal of Triticeae Crops, 2017, 37(6):834-840.
    [35]
    Groce R. A close view of photosystem[J]. Science, 2015, 348(6238):970-971.
    [36]
    Demmig-Adams B, Adams WW. Photoprotection in an ecological context:the remarkable complexity of thermal energy dissipation[J]. New Phytol, 2006, 172(1):11-21.
    [37]
    Campos MKF, Carvalho K, Souza FS, Marur CJ, Pereira LFP, Filho JCB, Vieira LGE. Drought tolerance and antioxidant enzymatic in transgenic ‘Swingle’ citrumelo plants over-accumulating proline[J]. Environ Exp Bot, 2011, 72:242-250.
    [38]
    祝一文, 赵方贵, 成云峰, 雷传松, 刘新. ‘海稻86’耐盐碱胁迫生理机制的初步研究[J]. 青岛农业大学学报(自然科学版), 2018, 35(1):32-39.

    Zhu YW, Zhao FG, Cheng YF, Lei CS, Liu X. The preliminary study on alkali-salt tolerance of ‘sea rice 86’ and physiological mechanisms[J]. Journal of Qingdao Agricultural University (Natural Science Edition), 2018, 35(1):32-39.
    [39]
    李子英, 丛日春, 杨庆山, 周健. 盐碱胁迫对柳树幼苗生长和渗透调节物质含量的影响[J]. 生态学报, 2017, 37(24):8511-8517.

    Li ZY, Cong RC, Yang QS, Zhou J. Effects of saline-alkali stress on growth and osmotic adjustment substances in willow seedlings[J]. Acta Ecologica Sinica, 2017, 37(24):8511-8517.
    [40]
    Kocheva KV, Georgiev GI, Kochev VK. An improvement of the dissusion model for assessment of drought stress in plant tissues[J]. Physiol Plantarum, 2014, 150:88-94.
    [41]
    陈少裕. 膜脂过氧化对植物细胞的伤害[J]. 植物生理学通讯, 1991, 27(2):84-90.

    Chen SY. Injury of membrane lipid peroxidation to plant cell[J]. Plant Physiology Communications, 1991, 27(2):84-90.
    [42]
    Begum P, Ikhtiari R, Fugetsu B. Potential impact of multi-walled carbon nanotubes exposure to the seedling stage of selected plant species[J]. Nanomaterials, 2014, 4(2):203-221.
    [43]
    Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel[J]. Science, 2006, 311(5761):622-627.
    [44]
    Shan J, Ji R, Yu YJ, Xie ZB, Yan XY. Biochar, activated carbon, and carbon nanotubes have different effects on fate of 14C-catechol and microbial community in soil[J]. Sci Rep, 2015, 5:1-11.
  • Related Articles

    [1]Zhang Cai-Fei, Peng Shuai, Tian Jing, Hu Guang-Wan, Wang Qing-Feng. A new species and a newly recorded species of Impatiens (Balsaminaceae) from Yunnan, China[J]. Plant Science Journal, 2020, 38(4): 437-447. DOI: 10.11913/PSJ.2095-0837.2020.40437
    [2]Liu Wen-Jian, Wang Li-Yan, Wu Lei, Jin Xiao-Hua. Crepidium josephianum, a new record of Orchidaceae from China[J]. Plant Science Journal, 2020, 38(3): 316-319. DOI: 10.11913/PSJ.2095-0837.2020.30316
    [3]Peng Shuai, Hu Guang-Wan, Cong Yi-Yan, Wang Qing-Feng. Impatiens dalaiensis, a newly recorded species of Impatiens from Yunnan, China[J]. Plant Science Journal, 2019, 37(5): 569-571. DOI: 10.11913/PSJ.2095-0837.2019.50569
    [4]LIU Qiang, LI Jian-Wu, YIN Jian-Tao, TAN Yun-Hong, WEN Bin, HUANG Wen, YE De-Ping. Agrostophyllum planicaule,A New Record of Orchidaceae from Yunnan,China[J]. Plant Science Journal, 2012, (3): 299-300. DOI: 10.3724/SP.J.1142.2012.30299
    [5]WANG Yi, WANG Yan. Habenaria anomaliflora,a New Record of Orchidaceae from China[J]. Plant Science Journal, 2010, 28(6): 696-697.
    [6]HU Sheng, LIU Guo-Xiang, ZHOU Guang-Jie, MEI Hong, HU Zheng-Yu. Peridinium polonicum,A New Record of Freshwater Toxic Dinoflagellate from China[J]. Plant Science Journal, 2008, 26(5): 454-457.
    [7]YOU Qing-Min, WANG Quan-Xi. New Records of Pinnularia(Bacillariophyta) from Xinjiang, China[J]. Plant Science Journal, 2007, 25(6): 572-575.
    [8]CHEN Shan, HU Hong-Jun. New Varieties and New Records of Green Flagellates from China(Ⅱ)[J]. Plant Science Journal, 2003, 21(6): 492-496.
    [9]CHEN Shan, HU Hong-Jun. New Species and Records of Green Flagellates from China[J]. Plant Science Journal, 2002, 20(3): 191-198.
    [10]Ma Jilong, LI Yanjun. NEW RECORD OF THE CAREX FROM CHINA[J]. Plant Science Journal, 1998, 16(1): 32-32.
  • Cited by

    Periodical cited type(8)

    1. 师雪淇,程金花,管凝,侯芳,沈子雅. 喀斯特地区典型植被根系对优先流的影响. 水土保持研究. 2024(05): 73-83 .
    2. 庞榆,贺同鑫,孙建飞,宁文彩,裴广廷,胡宝清,王斌. 北热带喀斯特森林优势树种细根生物量估算模型构建. 植物生态学报. 2024(10): 1312-1325 .
    3. 覃桂丽,玉舒中. 降香黄檀根系性状对石灰岩石砾的适应响应. 西南林业大学学报(自然科学). 2023(03): 24-32 .
    4. 吴静,盛茂银,肖海龙,郭超,王霖娇. 西南喀斯特石漠化环境适生植物细根构型及其与细根和根际土壤养分计量特征的相关性. 生态学报. 2022(02): 677-687 .
    5. 林伟山,德科加,向雪梅,钱诗祎,魏希杰,冯廷旭. 天然草地植被-土壤系统碳、氮、磷(钾)库的时空分布格局研究进展. 青海畜牧兽医杂志. 2022(02): 45-51+68 .
    6. 杨慧,宁静,马洋,周孟霞,曹建华. 西南岩溶区植被碳循环研究进展. 广西植物. 2022(06): 903-913 .
    7. 薛建辉,周之栋,吴永波. 喀斯特石漠化山地退化土壤生态修复研究进展. 南京林业大学学报(自然科学版). 2022(06): 135-145 .
    8. 张新生,卢杰. 根系生物量及其对根际生态系统响应的研究进展. 江苏农业科学. 2021(17): 39-45 .

    Other cited types(9)

Catalog

    Article views (671) PDF downloads (430) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return