Advance Search
Xu Bo, Chen Guang-Fu, Li Zhi-Min. Cytological study on four species of Arenaria from Qinghai-Tibet Plateau[J]. Plant Science Journal, 2020, 38(6): 723-729. DOI: 10.11913/PSJ.2095-0837.2020.60723
Citation: Xu Bo, Chen Guang-Fu, Li Zhi-Min. Cytological study on four species of Arenaria from Qinghai-Tibet Plateau[J]. Plant Science Journal, 2020, 38(6): 723-729. DOI: 10.11913/PSJ.2095-0837.2020.60723

Cytological study on four species of Arenaria from Qinghai-Tibet Plateau

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31460047, 31960046) and Lijiang Normal College Internship Training Base Construction Project (XJ03201801).

More Information
  • Received Date: March 22, 2020
  • Revised Date: April 28, 2020
  • Available Online: October 31, 2022
  • Published Date: December 27, 2020
  • To determine the cytotaxonomic characteristics of Arenaria in China, A. subgen. Eremogoneastrum A. brevipetala Y. W. Tsui et L. H. Zhou (two populations from Kangding and Daocheng in Sichuan), A. baxoiensis L. H. Zhou (two populations from Yela and Anjula mountains, Baxoi, Tibet), A. ischnophylla Williams (two populations from Damxung and Gongbo'gyamda in Tibet), and A. bryophylla Fernald (Lhasa, Tibet) were studied. Root tips were used in combination with KaryoType 2.0 analysis for karyotype research. Results showed that the chromosome number in all seven populations of the four species was 2n = 22, i.e., diploid evolution. The karyotype formula was 2n=2x=22=22 m and karyotype asymmetry belonged to Stebbins's-1A type, with an AI value in the range of 1.75 - 0.32. Thus, combined with existing cytological data for Arenaria, the karyotype of A. subgen. Eremogoneastrum is primitive, and its chromosome number (ploidy) is stable. The chromosome number and karyotype data of the four studied species are reported here for the first time. These results will supplement current cytological information for Arenaria in the Qinghai-Tibet Plateau and provide insight into the taxonomy, phylogeny, and floristic geography of Arenaria and Caryophyllaceae.
  • [1]
    张镱锂, 李炳元, 郑度. 论青藏高原范围与面积[J]. 地理研究, 2002, 21(1):1-8.

    Zhang YL, Li BY, Zheng D. A discussion on the boundary and area of the Tibetan Plateau in China[J]. Geographical Research, 2002, 21(1):1-8.
    [2]
    吴征镒, 王荷生. 中国自然地理-植物地理(上册)[M]. 北京:科学出版社, 1983.
    [3]
    Myers N, Mittermeier RA, Mittermeier CG, Fonseca GABD, Kent J. Biodiversity hotspots for conservation prio-rities[J]. Nature, 2000, 403(6772):853-858.
    [4]
    Wen J, Zhang JQ, Nie ZL, Zhong Y, Sun H. Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau[J]. Front Genet, 2014, 5:4.
    [5]
    孙文光, 孙航, 李志敏. 染色体数据的挖掘及其在植物多样性进化研究中的利用[J]. 植物科学学报, 2019, 37(2):260-269.

    Sun WG, Sun H, Li ZM. Chromosome date mining and its application in plant diversity research[J]. Plant Science Journal, 2019, 37(2):260-269.
    [6]
    中国科学院中国植物志编辑委员会. 中国植物志:第26卷[M]. 北京:科学出版社, 1996:159-195.
    [7]
    周立华. 论无心菜属的地理分布[J]. 植物分类学报, 1996, 34(3):229-241.

    Zhou LH. On the geographical distribution of Arenaria L.[J]. Acta Phytotaxonomica Sinica, 1996, 34(3):229-241.
    [8]
    Li AR, Ban Q. Arenaria dawuensis, a new species of the Caryophyllaceae from Sichuan, China[J]. Acta Phytota-xonomica Sinica, 2003, 41(4):390-392.
    [9]
    沈泽昊, 赵子恩. 湖北无心菜属(石竹科)一新种——神农架无心菜[J]. 植物分类学报, 2005, 43(1):73-75.

    Shen ZH, Zhao ZE. Arenaria shennongjiaensis, a new species of the Caryophyllaceae from Hubei, China[J]. Acta Phytotaxonomica Sinica, 2005, 43(1):73-75.
    [10]
    姚纲. 石竹科齿瓣无心菜属2新组合名称[J]. 热带亚热带植物学报, 2017, 25(1):11-12.

    Yao G. Two new combinations in Odontostemma (Caryophyllaceae)[J]. Journal of Tropical and Subtropical Botany, 2017, 25(1):11-12.
    [11]
    Donoghue MJ, Greenberg AK. Molecular systematics and character evolution in Caryophyllaceae[J]. Taxon, 2011, 60(6):1637-1652.
    [12]
    Harbaugh DT, Nepokroeff M, Rabeler RK, McNeill J, Zimmer EA, Wagner WL. A new lineage-based tribal classification of the family Caryophyllaceae[J]. Int J Plant Sci, 2010, 171(2):185-198.
    [13]
    Xu B, Luo D, Li ZM, Sun H. Evolutionary radiations of cushion plants on the Qinghai-Tibet Plateau:insights from molecular phylogenetic analysis of two subgenera of Arenaria and Thylacospermum (Caryophyllaceae)[J]. Taxon, 2019, 68(5):1003-1020.
    [14]
    罗元霞, 岳学坤, 孙航, 李志敏. 横断山脉地区青藏雪灵芝核形态学[J]. 云南植物研究, 2008, 30(6):662-664.

    Luo YX, Yue XK, Sun H, Li ZM. Cytological studies on Arenaria roborowskii (Caryophyllaceae) from Hengduan Mountains[J]. Acta Botanica Yunnanica, 2008, 30(6):662-664.
    [15]
    刘永安, 冯海生, 陈志国, 畅喜云, 刘瑞娟, 等. 物染色体核型分析常用方法概述[J]. 贵州农业科学, 2006, 34(1):98-102.

    Liu YA, Feng HS, Chen ZG, Chang XY, Liu RJ, et al. Common methods of karyotype analysis in plant[J]. Guizhou Agricultural Sciences, 2006, 34(1):98-102.
    [16]
    李懋学, 陈瑞阳. 关于植物核型分析的标准化问题[J]. 武汉植物学研究, 1985, 3(4):297-302.

    Li MX, Chen RY. A suggestion on the standardization of karyotype analysis in plants[J]. Journal of Wuhan Botanical Research, 1985, 3(4):297-302.
    [17]
    Altinordu F, Peruzzi L, Yu Y, He XJ.A tool for the analysis of chromosomes:KaryoType[J]. Taxon, 2016, 65(3):586-592.
    [18]
    Tanaka R. Types of resting nuclei in Orchidaceae[J]. Bot Mag-Tokyo, 1971, 84:118-122.
    [19]
    Levan A, Fredga K, Sandberg AA. Nomenclature for centromeric position on chromosomes[J]. Hereditas, 1964, 52(2):201-220.
    [20]
    Stebbins GL. Chromosomal Evolution in Higher Plants[M]. London:Edward Arnold Ltd, 1971.
    [21]
    Arano H. Cytological studies in subfamily Carduoideae (Compositae) of JapanⅪ[STXFZ][J]. Bot Mag, 1963, 76:32.
    [22]
    Paszko B. A critical review and a new proposal of karyotype asymmetry indices[J]. Plant Syst Evol, 2006, 258:39-48.
    [23]
    Fadaei F, Sheidai M, Asadi M. Cytological study the genus Arenaria L. (Caryophyllaceae)[J]. Caryologia, 2010, 63(2):149-156.
    [24]
    Siddique MAA, Jeelani SM. Cyto-genetic diversity with special reference to medicinal plants of the Kashmir Himalaya-a review[J]. Caryologia, 2015, 68(4):365-380.
    [25]
    王汉屏. 石竹科植物的细胞分类学研究(一)[J]. 陕西教育学院学报, 2004(1):87-91.

    Wang HP. The cytotaxonomy studies of Caryophyllaceae plants (1)[J]. Journal of Shaanxi Institute of Education, 2004(1):87-91.
    [26]
    Luo D, Liu D, Xu B, Nie ZL, Sun H, Li ZM. A karyological study of six species of Silene L. (Caryophyllaceae) from the Hengduan Mountains, SW China[J]. Caryologia, 2011, 64(1):10-13.
    [27]
    底远哲, 胡伸萌, 王海霞, 孙文光, 李志敏. 青藏高原3种蝇子草属植物的核型研究[J]. 植物遗传资源学报, 2019, 20(4):1074-1079.

    Di YZ, Hu SM, Wang HX, Sun WG, Li ZM. Karyotypes of three Silene L. (Caryophyllaceae) species from the Qinghai-Tibet Plateau[J]. Journal of Plant Genetic Resources, 2019, 20(4):1074-1079.
    [28]
    杨慧娴, 孙文光, 欧晓昆, 李志敏. 中国西南地区6种植物的核型研究及其系统学意义[J]. 西北植物学报, 2019, 39(4):630-637.

    Yang HX, Sun WG, Ou XK, Li ZM. Karyotype analysis and systematic significance of six species in Southwest China[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(4):630-637.
    [29]
    Löve A, Löve D. Origin and evolution of the arctic and alpine floras[M]//Ives JD, Barry RG, eds. Arctic and Alpine Environment. London:Methuen Co Ltd, 1974.
    [30]
    王广艳, 孟盈, 聂泽龙, 杨永平. 青藏高原东南缘五种火绒草属植物的核型[J]. 植物分类与资源学报, 2013, 35(3):355-360.

    Wang GY, Meng Y, Nie ZL, Yang YP. Karyotypes of five Leontopodium species from the Southeastern Qinghai-Tibet Plateau, Southwest China[J]. Plant Diversity and Resources, 2013, 35(3):355-360.
    [31]
    Meng Y, Yang YP, Sun H, Deng T, Nie ZL. Chromosome numbers, karyotypes, and polyploidy evolution of Anaphalis species (Asteraceae:Gnaphalieae) from the Hengduan Mountains, SW China[J]. Caryologia, 2014, 67(3):238-249.
    [32]
    Liu JQ. Uniformity of karyotypes in Ligularia (Asteraceae:Senecioneae), a highly diversified genus of the eastern Qinghai-Tibet Plateau highlands and adjacent areas[J]. Bot J Linn Soc, 2004, 144(3):329-342.
    [33]
    Chen GF, Sun WG, Hong DY, Zhou Z, Niu Y, et al. Systematic significance of cytology in Cyananthus (Campanulaceae) endemic to the Sino-Himalayan region[J]. J Syst Evol, 2014, 52(3):260-270.
    [34]
    王家坚, 彭智邦, 孙航, 聂泽龙, 孟盈. 青藏高原与横断山被子植物区系演化的细胞地理学特征[J]. 生物多样性, 2017, 25(2):218-225.

    Wang JJ, Peng ZB, Sun H, Nie ZL, Meng Y. Cytogeographic patterns of angiosperms flora of the Qinghai-Tibet Plateau and Hengduan Mountains[J]. Biodiversity Science, 2017, 25(2):218-225.
  • Related Articles

    [1]Zhang Cai-Fei, Peng Shuai, Tian Jing, Hu Guang-Wan, Wang Qing-Feng. A new species and a newly recorded species of Impatiens (Balsaminaceae) from Yunnan, China[J]. Plant Science Journal, 2020, 38(4): 437-447. DOI: 10.11913/PSJ.2095-0837.2020.40437
    [2]Liu Wen-Jian, Wang Li-Yan, Wu Lei, Jin Xiao-Hua. Crepidium josephianum, a new record of Orchidaceae from China[J]. Plant Science Journal, 2020, 38(3): 316-319. DOI: 10.11913/PSJ.2095-0837.2020.30316
    [3]Peng Shuai, Hu Guang-Wan, Cong Yi-Yan, Wang Qing-Feng. Impatiens dalaiensis, a newly recorded species of Impatiens from Yunnan, China[J]. Plant Science Journal, 2019, 37(5): 569-571. DOI: 10.11913/PSJ.2095-0837.2019.50569
    [4]LIU Qiang, LI Jian-Wu, YIN Jian-Tao, TAN Yun-Hong, WEN Bin, HUANG Wen, YE De-Ping. Agrostophyllum planicaule,A New Record of Orchidaceae from Yunnan,China[J]. Plant Science Journal, 2012, (3): 299-300. DOI: 10.3724/SP.J.1142.2012.30299
    [5]WANG Yi, WANG Yan. Habenaria anomaliflora,a New Record of Orchidaceae from China[J]. Plant Science Journal, 2010, 28(6): 696-697.
    [6]HU Sheng, LIU Guo-Xiang, ZHOU Guang-Jie, MEI Hong, HU Zheng-Yu. Peridinium polonicum,A New Record of Freshwater Toxic Dinoflagellate from China[J]. Plant Science Journal, 2008, 26(5): 454-457.
    [7]YOU Qing-Min, WANG Quan-Xi. New Records of Pinnularia(Bacillariophyta) from Xinjiang, China[J]. Plant Science Journal, 2007, 25(6): 572-575.
    [8]CHEN Shan, HU Hong-Jun. New Varieties and New Records of Green Flagellates from China(Ⅱ)[J]. Plant Science Journal, 2003, 21(6): 492-496.
    [9]CHEN Shan, HU Hong-Jun. New Species and Records of Green Flagellates from China[J]. Plant Science Journal, 2002, 20(3): 191-198.
    [10]Ma Jilong, LI Yanjun. NEW RECORD OF THE CAREX FROM CHINA[J]. Plant Science Journal, 1998, 16(1): 32-32.
  • Cited by

    Periodical cited type(8)

    1. 师雪淇,程金花,管凝,侯芳,沈子雅. 喀斯特地区典型植被根系对优先流的影响. 水土保持研究. 2024(05): 73-83 .
    2. 庞榆,贺同鑫,孙建飞,宁文彩,裴广廷,胡宝清,王斌. 北热带喀斯特森林优势树种细根生物量估算模型构建. 植物生态学报. 2024(10): 1312-1325 .
    3. 覃桂丽,玉舒中. 降香黄檀根系性状对石灰岩石砾的适应响应. 西南林业大学学报(自然科学). 2023(03): 24-32 .
    4. 吴静,盛茂银,肖海龙,郭超,王霖娇. 西南喀斯特石漠化环境适生植物细根构型及其与细根和根际土壤养分计量特征的相关性. 生态学报. 2022(02): 677-687 .
    5. 林伟山,德科加,向雪梅,钱诗祎,魏希杰,冯廷旭. 天然草地植被-土壤系统碳、氮、磷(钾)库的时空分布格局研究进展. 青海畜牧兽医杂志. 2022(02): 45-51+68 .
    6. 杨慧,宁静,马洋,周孟霞,曹建华. 西南岩溶区植被碳循环研究进展. 广西植物. 2022(06): 903-913 .
    7. 薛建辉,周之栋,吴永波. 喀斯特石漠化山地退化土壤生态修复研究进展. 南京林业大学学报(自然科学版). 2022(06): 135-145 .
    8. 张新生,卢杰. 根系生物量及其对根际生态系统响应的研究进展. 江苏农业科学. 2021(17): 39-45 .

    Other cited types(9)

Catalog

    Article views (834) PDF downloads (999) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return