Advance Search
Chen Jin-Yi, Zhang Jing, Li Su-Hui, Song Hai-Yan, Wang Jia-Min, Tao Jian-Ping, Liu Jin-Chun. Synergistic aboveground-belowground growth of Bidens pilosa L. in heterogeneous karst habitats[J]. Plant Science Journal, 2020, 38(6): 762-772. DOI: 10.11913/PSJ.2095-0837.2020.60762
Citation: Chen Jin-Yi, Zhang Jing, Li Su-Hui, Song Hai-Yan, Wang Jia-Min, Tao Jian-Ping, Liu Jin-Chun. Synergistic aboveground-belowground growth of Bidens pilosa L. in heterogeneous karst habitats[J]. Plant Science Journal, 2020, 38(6): 762-772. DOI: 10.11913/PSJ.2095-0837.2020.60762

Synergistic aboveground-belowground growth of Bidens pilosa L. in heterogeneous karst habitats

Funds: 

This work was supported by grants from the Fundamental Research Funds for the Central Universities (XDJK2020B037) and National Natural Science Foundation of China (31500399).

More Information
  • Received Date: March 15, 2020
  • Revised Date: April 23, 2020
  • Available Online: October 31, 2022
  • Published Date: December 27, 2020
  • Based on simulation of heterogeneous karst habitats, the aboveground and belowground growth relationship of Bidens pilosa L. and biomass distribution patterns under two soil habitats (SW: shallow and wide; DN: deep and narrow) and three water treatments (W100%: control; W50%: water reduction by 50%; W30%: water reduction by 70%) were investigated through a randomized block group experiment. Results showed that: (1) Aboveground growth (plant height, ground diameter, leaf area, leaf biomass) and root growth (root length, root surface area, root volume, root biomass) in both habitats decreased with the decrease in applied water; the leaf area ratio increased with the decrease in applied water; and the root-to-mass ratio increased at first and then decreased in the SW soil habitat, but increased in the DN soil habitat. (2) Aboveground biomass and root biomass, leaf area and root length, and leaf area and root growth in each layer of the two habitats showed significant positive correlations. In SW soil habitats, the aboveground biomass of B. pilosa showed a significant positive correlation with the root biomass in each soil layer, whereas in the DN soil habitat, the aboveground biomass was only significantly positively correlated with the middle and upper soil layer root biomass. Studies have shown that B. pilosa exhibited good synergistic aboveground and belowground growth strategies in different habitats. When enhancing the acquisition of belowground resources, B. pilosa also enhanced the acquisition of aboveground resources. In SW soil habitats, B. pilosa coped with rapid drought and water shortages by coordinating the lateral expansion ability of the root system and growth of plant leaves; in DN soil habitats, plants coordinated the downward expansion ability of the root system and expansion of the leaf area to better utilize deep water resources in the soil.
  • [1]
    Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E. Let the concept of trait be functional![J]. Oikos, 2007, 116(5):882-892.
    [2]
    Díaz S, Cabido M. Vive la différence:Plant functional diversity matters to ecosystem processes[J]. Trends Ecol Evol, 2001, 16(11):646-655.
    [3]
    Mooney KA, Rayko H, Andre K, Agrawal AA. Evolutionary trade-offs in plants mediate the strength of trophic cascades[J]. Science, 2010, 327(5973):1642-1644.
    [4]
    Fortunel C, Fine PVA, Baraloto C. Leaf, stem and root tissue strategies across 758 Neotropical tree species[J]. Funct Ecol, 2012, 26(5):1153-1161.
    [5]
    陈莹婷, 许振柱. 植物叶经济谱的研究进展[J]. 植物生态学报, 2014, 38(10):1135-1153.

    Chen YT, Xu ZZ. Review on research of leaf economics spectrum[J]. Chinese Journal of Plant Ecology, 2014, 38(10):1135-1153.
    [6]
    杨梦娇. 干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响[J]. 农业与技术, 2015, 35(14):13.

    Yang MJ. Effects of drought stress on root growth and leaf photosynthesis of wheat seedlings[J]. Agriculture and Technology, 2015, 35(14):13.
    [7]
    闫小红, 何春兰, 周兵, 王宁, 尹增芳. 不同生育期入侵植物大狼把草的生物量分配格局及异速生长分析[J]. 生态与农村环境学报, 2017, 33(2):150-158.

    Yan XH, He CL, Zhou B, Wang N, Yin ZF. Biomass distribution and allometric analysis of Bidens frondosa relative to growth stage[J]. Journal of Ecology and Rural Environment, 2017, 33(2):150-158.
    [8]
    杨才琼, 胡宝予, 吴海军, 秦雯婷, 张潇文, 刘卫国, 等. 黑豆种质苗期耐荫性评价及其根系对弱光胁迫的响应[J]. 中国生态农业学报, 2017, 25(6):893-902.

    Yang CQ, Hu BY, Wu HJ, Qin WT, Zhang XW, Liu WG, et al. Evaluation for shade tolerance of black soybean germplasms and their root structure response to shade stress at seedling stage[J]. Chinese Journal of Eco-Agriculture, 2017, 25(6):893-902.
    [9]
    王一帆. 地上地下互作提高小麦间作玉米水分利用效率的机理[D]. 兰州:甘肃农业大学, 2018:136.
    [10]
    梁坤伦, 张洪荣, 张丽静, 代万安, 李晓忠, 周志宇, 等. 紫穗槐表型可塑性及植株资源分配对高寒生境的响应[J]. 草业科学, 2012, 29(3):440-446.

    Liang KL, Zhang HR, Zhang LJ, Dai WA, Li XZ, Zhou ZY, et al. Response of phenotypic plasticity and plant resource allocation of Amorpha fruiticosa to alpine habitat[J]. Pratacultural Science, 2012, 29(3):440-446.
    [11]
    吴求生, 龙健, 李娟, 廖洪凯, 刘灵飞, 吴劲楠, 肖雄. 茂兰喀斯特森林小生境类型对土壤微生物群落组成的影响[J]. 生态学报, 2019, 39(3):1009-1018.

    Wu QS, Long J, Li J, Liao HK, Liu LF, Wu JN, Xiao X. Effects of different microhabitat types on soil microbial community composition in the Maolan Karst Forest in Southwest China[J]. Acta Ecologica Sinica, 2019, 39(3):1009-1018.
    [12]
    Yang QY, Jiang ZC, Yuan DX, Ma ZL, Xie YQ. Temporal and spatial changes of karst rocky desertification in ecological reconstruction region of Southwest China[J]. Environ Earth Sci, 2014, 72:4483-4489.
    [13]
    向运蓉, 张芳, 段静, 黄慧敏, 何丹妮, 刘源, 陶建平. 异质性水分环境中克隆整合对活血丹生物量分配及叶片结构特征的影响[J]. 植物研究, 2019, 39(2):200-207.

    Xiang YR, Zhang F, Duan J, Huang HM, He DN, Liu Y, Tao JP. Effects of clonal integration on biomass allocation and leaf structure of Glechoma longituba (Nakai) Kupr in different water availability[J]. Bulletin of Botanical Research, 2019, 39(2):200-207.
    [14]
    邢德科, 吴沿友, 吴沿胜, 于睿, 黎明鸿, 姚香平. 疯麻树和枫杨幼苗对5种模拟喀斯特逆境的光合生理响应[J]. 中国岩溶, 2016, 35(6):649-656.

    Xing DK, Wu YY, Wu YS, Yu R, Li MH, Yao XP. Photosynthetic physiological response of Jatropha carcas and Pterocarya stenoptera seedlings to five simulated karst adversities[J]. Carsologica Sinica, 2016, 35(6):649-656.
    [15]
    欧芷阳, 曹艳云, 谭长强, 郑威, 庞世龙, 申文辉. 干旱胁迫对喀斯特生境蚬木幼苗光合特性及抗性生理的影响[J]. 生态学杂志, 2018, 37(11):3270-3276.

    Ou ZY, Cao YY, Tan ZQ, Zheng W, Pang SL, Shen WH. Effects of drought on photosynthesis and resistance physiology of Excentrodendron hsienmu seedlings in karst habitat[J]. Chinese Journal of Ecology, 2018, 37(11):3270-3276.
    [16]
    Gu DX, Zhang ZF, Mallik A. Seasonal water use strategy of Cyclobalanopsis glauca in a karst area of southern China[J]. Environ Earth Sci, 2015, 74:1007-1014.
    [17]
    张静, 李素慧, 宋海燕, 陈金艺, 王佳敏, 李若溪, 等. 模拟喀斯特不同土壤生境下黑麦草对水分胁迫的生长和光合生理响应[J]. 生态学报, 2020, 40(4):1240-1248.

    Zhang J, Li SH, Song HY, Chen JY, Wang JM, Li RX, et al. Growth and photosynthetic physiological responses of Lolium perenne L. to water stress in the simulated karst soil habitats[J]. Acta Ecologica Sinica, 2020, 40(4):1240-1248.
    [18]
    Zhang J, Wang J, Chen J, Song H, Li S, Zhao Y, et al. Soil moisture determines horizontal and vertical root extension in the perennial grass Lolium perenne L. growing in karst soil[J/OL]. Frontiers in Plant Science, doi: 10.3389/fpls.2019.00629.
    [19]
    谢天, 侯鹰, 陈卫平, 王美娥, 吕斯丹, 李勖之. 城市化对土壤生态环境的影响研究进展[J]. 生态学报, 2019, 39(4):1154-1164.

    Xie T, Hou Y, Chen WP, Wang ME, Lv SD, Li XZ. Impact of urbanization on the soil ecological environment:a review[J]. Acta Ecologica Sinica, 2019, 39(4):1154-1164.
    [20]
    刘玉国, 刘长成, 郭柯. 四种不同生活型植物幼苗对喀斯特生境干旱的生理生态适应性[J]. 植物生态学报, 2011, 35(10):1070-1082.

    Liu YG, Liu CC, Guo K. Ecophysiological adaptations to drought stress of seedlings of four plant species with different growth forms in karst habitats[J]. Chinese Journal of Plant Ecology, 2011, 35(10):1070-1082.
    [21]
    郭柯, 刘长成, 董鸣. 我国西南喀斯特植物生态适应性与石漠化治理[J]. 植物生态学报, 2011, 35(10):991-999.

    Guo K, Liu CC, Dong M. Ecological adaptation of plants and control of rocky-desertification on karst region of Southwest China[J]. Chinese Journal of Plant, 2011, 35(10):991-999.
    [22]
    于文颖, 纪瑞鹏, 冯锐, 赵先丽, 张玉书. 不同生育期玉米叶片光合特性及水分利用效率对水分胁迫的响应[J]. 生态学报, 2015, 35(9):2902-2909.

    Yu WY, Ji RP, Feng R, Zhao XL, Zhang YS. Response of water stress on photosynthetic characteristics and water use efficiency of maize leaves in different growth stage[J]. Acta Ecologica Sinica, 2015, 35(9):2902-2909.
    [23]
    韦莉莉, 张小全, 侯振宏, 徐德应, 余雪标. 杉木苗木光合作用及其产物分配对水分胁迫的响应[J]. 植物生态学报, 2005, 29(3):394-402.

    Wei LL, Zhang XQ, Hou ZH, Xu DY, Yu XB. Effect of water stress on photosynthesis and carbon allocation in Cunninghamia lanceolata seedlings[J]. Chinese Journal of Plant, 2005, 29(3):394-402.
    [24]
    Blackman CJ, Brodribb TJ, Jordan GJ. Leaf hydraulic vulnerability influences species' bioclimatic limits in a diverse group of woody angiosperms[J]. Oecologia, 2011, 168(1):1-10.
    [25]
    Freschet GT, Swart EM, Cornelissen JHC. Integrated plant phenotypic responses to contrasting above-and below-ground resources:key roles of specific leaf area and root mass fraction[J]. New Phytol, 2015, 206(4):1247-1260.
    [26]
    Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Aust J Bot, 2003, 51(4):335-380.
    [27]
    Lavorel S, Grigulis K. How fundamental plant functional trait relationships scale-up to trade-offs and synergies in ecosystem services[J]. J Ecol, 2015, 100(1):128-140.
    [28]
    李伟成, 田新立, 盛海燕, 刘姚姚, 张瑞. 干旱胁迫和复水对浙江楠光合与根系生长的影响[J]. 生态科学, 2019, 38(3):182-188.

    Li WC, Tian XL, Sheng HY, Liu YY, Zhang R. Effects of drought stress and re-watering on photosynthesis and root growth of Phoebe chekiangensis[J]. Ecological Science, 2019, 38(3):182-188.
    [29]
    朱铁霞, 高阳, 高凯, 李志华. 干旱胁迫下菊芋各器官生物量及物质分配规律[J]. 生态学报, 2019, 39(21):8021-8026.

    Zhu TX, Gao Y, Gao K, Li ZH. Organ biomass and resource allocation in response to drought stress in Jerusalem artichoke[J]. Acta Ecologica Sinica, 2019, 39(21):8021-8026.
    [30]
    崔婉莹, 刘思佳, 魏亚伟, 殷有, 周莉, 周旺明, 于大炮. 氮添加和水分胁迫对红松、水曲柳幼苗生物量分配的影响[J]. 应用生态学报, 2019, 30(5):1454-1462.

    Cui WY, Liu SJ, Wei YW, Yin Y, Zhou L, Zhou WM, Yu DP. Effects of nitrogen addition on biomass allocation of Pinus koraiensis and Fraxinus mandshurica seedlings under water stress[J]. Chinese Journal of Applied Ecology, 2019, 30(5):1454-1462.
    [31]
    Monshausen GB, Bibikova TN, Weisenseel MH, Gilroy S.Ca2+ regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots[J]. Plant Cell, 2009, 21(8):2341-2356.
  • Related Articles

    [1]Zhang Cai-Fei, Peng Shuai, Tian Jing, Hu Guang-Wan, Wang Qing-Feng. A new species and a newly recorded species of Impatiens (Balsaminaceae) from Yunnan, China[J]. Plant Science Journal, 2020, 38(4): 437-447. DOI: 10.11913/PSJ.2095-0837.2020.40437
    [2]Liu Wen-Jian, Wang Li-Yan, Wu Lei, Jin Xiao-Hua. Crepidium josephianum, a new record of Orchidaceae from China[J]. Plant Science Journal, 2020, 38(3): 316-319. DOI: 10.11913/PSJ.2095-0837.2020.30316
    [3]Peng Shuai, Hu Guang-Wan, Cong Yi-Yan, Wang Qing-Feng. Impatiens dalaiensis, a newly recorded species of Impatiens from Yunnan, China[J]. Plant Science Journal, 2019, 37(5): 569-571. DOI: 10.11913/PSJ.2095-0837.2019.50569
    [4]LIU Qiang, LI Jian-Wu, YIN Jian-Tao, TAN Yun-Hong, WEN Bin, HUANG Wen, YE De-Ping. Agrostophyllum planicaule,A New Record of Orchidaceae from Yunnan,China[J]. Plant Science Journal, 2012, (3): 299-300. DOI: 10.3724/SP.J.1142.2012.30299
    [5]WANG Yi, WANG Yan. Habenaria anomaliflora,a New Record of Orchidaceae from China[J]. Plant Science Journal, 2010, 28(6): 696-697.
    [6]HU Sheng, LIU Guo-Xiang, ZHOU Guang-Jie, MEI Hong, HU Zheng-Yu. Peridinium polonicum,A New Record of Freshwater Toxic Dinoflagellate from China[J]. Plant Science Journal, 2008, 26(5): 454-457.
    [7]YOU Qing-Min, WANG Quan-Xi. New Records of Pinnularia(Bacillariophyta) from Xinjiang, China[J]. Plant Science Journal, 2007, 25(6): 572-575.
    [8]CHEN Shan, HU Hong-Jun. New Varieties and New Records of Green Flagellates from China(Ⅱ)[J]. Plant Science Journal, 2003, 21(6): 492-496.
    [9]CHEN Shan, HU Hong-Jun. New Species and Records of Green Flagellates from China[J]. Plant Science Journal, 2002, 20(3): 191-198.
    [10]Ma Jilong, LI Yanjun. NEW RECORD OF THE CAREX FROM CHINA[J]. Plant Science Journal, 1998, 16(1): 32-32.
  • Cited by

    Periodical cited type(8)

    1. 师雪淇,程金花,管凝,侯芳,沈子雅. 喀斯特地区典型植被根系对优先流的影响. 水土保持研究. 2024(05): 73-83 .
    2. 庞榆,贺同鑫,孙建飞,宁文彩,裴广廷,胡宝清,王斌. 北热带喀斯特森林优势树种细根生物量估算模型构建. 植物生态学报. 2024(10): 1312-1325 .
    3. 覃桂丽,玉舒中. 降香黄檀根系性状对石灰岩石砾的适应响应. 西南林业大学学报(自然科学). 2023(03): 24-32 .
    4. 吴静,盛茂银,肖海龙,郭超,王霖娇. 西南喀斯特石漠化环境适生植物细根构型及其与细根和根际土壤养分计量特征的相关性. 生态学报. 2022(02): 677-687 .
    5. 林伟山,德科加,向雪梅,钱诗祎,魏希杰,冯廷旭. 天然草地植被-土壤系统碳、氮、磷(钾)库的时空分布格局研究进展. 青海畜牧兽医杂志. 2022(02): 45-51+68 .
    6. 杨慧,宁静,马洋,周孟霞,曹建华. 西南岩溶区植被碳循环研究进展. 广西植物. 2022(06): 903-913 .
    7. 薛建辉,周之栋,吴永波. 喀斯特石漠化山地退化土壤生态修复研究进展. 南京林业大学学报(自然科学版). 2022(06): 135-145 .
    8. 张新生,卢杰. 根系生物量及其对根际生态系统响应的研究进展. 江苏农业科学. 2021(17): 39-45 .

    Other cited types(9)

Catalog

    Article views (550) PDF downloads (530) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return