Advance Search
Chen Xu-Fei, Zhang Ying-Xue, Huang Xian-Yan, Wang Quan-Xi, Cao Jian-Guo, Wang You-Fang. Composition and content analysis of anthocyanidins and proanthocyanidins in ferns[J]. Plant Science Journal, 2020, 38(6): 820-830. DOI: 10.11913/PSJ.2095-0837.2020.60820
Citation: Chen Xu-Fei, Zhang Ying-Xue, Huang Xian-Yan, Wang Quan-Xi, Cao Jian-Guo, Wang You-Fang. Composition and content analysis of anthocyanidins and proanthocyanidins in ferns[J]. Plant Science Journal, 2020, 38(6): 820-830. DOI: 10.11913/PSJ.2095-0837.2020.60820

Composition and content analysis of anthocyanidins and proanthocyanidins in ferns

Funds: 

This work was supported by a grant from the National Natural Science Foundation of Shanghai (13ZR1429700).

More Information
  • Received Date: March 26, 2020
  • Revised Date: May 27, 2020
  • Available Online: October 31, 2022
  • Published Date: December 27, 2020
  • In this paper, the contents of anthocyanidins, proanthocyanidins, and total flavonoids in the leaves of 44 species of ferns from 14 families in seven orders were detected. Results showed that all 44 species of ferns contained anthocyanidins. The average content of total anthocyanidins in Polypodiales ferns was significantly higher than that in the other fern orders. Cyanidin, delphinium, and pelargonium were the main anthocyanidin types in ferns. Among them, Blechnaceae ferns were rich in cyanidin and Dryopteridaceae ferns were rich in delphinidin. Most ferns contained proanthocyanidins. The average content of proanthocyanidins in Polypodiales ferns was significantly higher than that in the other fern orders. Thus, the distribution of flavonoids such as anthocyanidins and procyanidins in ferns appears to be related to plant classification. It is speculated that anthocyanidins are related to growth, development, and stress resistance in ferns.
  • [1]
    Kong JM, Chia LS, Goh NK, Chia TF, Brouillard R. Analysis and biological activities of anthocyanins[J]. Phytochemistry, 2003, 64(5):923-933.
    [2]
    Smeriglio A, Barreca D, Bellocco E, Trombetta D. Che-mistry, pharmacology and health benefits of anthocyanins[J]. Phytother Res, 2016, 30(8):1265-1286.
    [3]
    Mazza G, Miniati E. Anthocyanins in Fruits, Vegetables, and Grains[M]. Florida:CRC Press, 1993.
    [4]
    Silva S, Costa EM, Calhau C, Morais RM, Pintado ME. Anthocyanin extraction from plant tissues:a review[J]. Crit Rev Food Sci, 2017, 57(14):3072-3083.
    [5]
    Putta S, Yarla NS, Kumar EK, Lakkappa DB, Kamal MA, et al. Preventive and therapeutic potentials of anthocyanins in diabetes and associated complications[J]. Curr Med Chem, 2018, 25(39):5347-5371.
    [6]
    Nakashima S, Oda C, Masuda S, Tagashira M, Kanda T. Isolation and structure elucidation of tetrameric procyanidins from unripe apples (Malus pumila cv. Fuji) by NMR spectroscopy[J]. Phytochemistry, 2012, 83:144-152.
    [7]
    Prior RL, Gu L. Occurrence and biological significance of proanthocyanidins in the American diet[J]. Phytochemistry, 2005, 66(18):2264-2280.
    [8]
    Falcone Ferreyra ML, Rius SP, Casati P. Flavonoids:biosynthesis, biological functions, and biotechnological applications[J]. Front Plant Sci, 2012, 3:222.
    [9]
    Dai LP, Xiong ZT, Huang Y, Li MJ. Cadmium-induced changes in pigments, total phenolics, and phenylalanine ammonia-lyase activity in fronds of Azolla imbricata[J]. Environ Toxicol, 2006, 21(5):505-512.
    [10]
    Al-Hamdani SH, Sirna CB. Physiological responses of Salvinia minima to different phosphorus and nitrogen concentrations[J]. Am Fern J, 2008, 98(2):71-82.
    [11]
    Chai TT, Panirchellvum E, Ong HC, Wong FC. Phenolic contents and antioxidant properties of Stenochlaena palustris, an edible medicinal fern[J]. Bot Stud, 2012, 53(4):439-446.
    [12]
    Lee DW, Collins TM. Phylogenetic and ontogenetic influences on the distribution of anthocyanins and betacyanins in leaves of tropical plants[J]. Int J Plant Sci, 2001, 162(5):1141-1153.
    [13]
    Chang HC, Huang GJ, Agrawal DC, Kuo CL, Wu CR, et al. Antioxidant activities and polyphenol contents of six folk medicinal ferns used as "Gusuibu"[J]. Bot Stud, 2007, 48(4):397-406.
    [14]
    Chai TT, Elamparuthi S, Yong AL, Quah Y, Ong HC, et al. Antibacterial, anti-glucosidase, and antioxidant activities of selected highland ferns of Malaysia[J]. Bot Stud, 2013, 54(1):55.
    [15]
    Chai TT, Yeoh LY, Ismail NIM, Ong HC,Manan FA et al. Evaluation of glucosidase inhibitory and cytotoxic potential of five selected edible and medicinal ferns[J]. Trop J Pharm Res, 2015, 14(3):449-454.
    [16]
    肖宜安,何平,李晓红,时明芝,胡文海. 井冈山自然保护区蕨类植物资源[J]. 植物研究,2004, 24(1):35-40.

    Xiao YA, He P, Li XH, Shi MZ, Hu WH. Studied on the pteridophytes resources in Jinggangshan Nature Reserve[J]. Bulletin of Botanical Research, 2004, 24(1):35-40.
    [17]
    Schuettpelz E, Schneider H, Smith AR, Hovenkamp P, Prado J, et al. A community-derived classification for extant lycophytes and ferns[J]. J Syst Evol, 2016, 54(6):563-603.
    [18]
    Wang X, Wang M, Cao J, Wu YH, Xiao JB, et al. Analysis of flavonoids and antioxidants in extracts of ferns from Tianmu Mountain in Zhejiang Province (China)[J]. Ind Crop Prod, 2017, 97:137-145.
    [19]
    Hoballah ME, Gubitz T, Stuurman J, Broger L, Barone M, et al. Single gene-mediated shift in pollinator attraction in Petunia[J]. Plant Cell, 2007, 19(3):779-790.
    [20]
    Field TS, Lee DW, Holbrook NM. Why leaves turn red in autumn, the role of anthocyanins in senescing leaves of red-osier dogwood[J]. Plant Physiol, 2001, 127(2):566-574.
    [21]
    Neill SO, Gould KS, Kilmartin PA, Mitchell KA, Markham KR. Antioxidant activities of red versus green leaves in Elatostema rugosum[J]. Plant Cell Environ, 2002, 25(4):539-547.
    [22]
    Oberbaueri SF, Starr G. The role of anthocyanins for photosynthesis of Alaskan arctic evergreens during snowmelt[J]. Adv Bot Res, 2002, 37(2):129-145.
    [23]
    Chung SW, Yu DJ, Lee HJ. Changes in anthocyanidin and anthocyanin pigments in highbush blueberry (Vaccinium corymbosum cv. Bluecrop)fruits during ripening[J]. Hortic Environ Biote, 2016, 57(5):424-430.
    [24]
    Kim DE, Shang XM, Assefa AD, Keum YS, Saini RK. Metabolite profiling of green, green/red, and red lettuce cultivars:variation in health beneficial compounds and antioxidant potential[J]. Food Res Int, 2018, 105:361-370.
    [25]
    Zhang Z, Kou X, Fugal K, McLaughlin J. Comparison of HPLC methods for determination of anthocyanins and anthocyanidins in bilberry extracts[J]. J Agr Food Chem, 2004, 52(4):688-691.
    [26]
    Maier A, Hoecker U. COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions[J]. Plant Signal Behav, 2015, 10(1):e970440.
    [27]
    Mazzucato A, Willems D, Bernini R, Picarella ME, Santangelo E, et al. Novel phenotypes related to the breeding of purple-fruited tomatoes and effect of peel extracts on human cancer cell proliferation[J]. Plant Physiol Bioch, 2013, 72:125-133.
    [28]
    Guo N, Cheng F, Wu J, Liu B, Zheng S, et al. Anthocyanin biosynthetic genes in Brassica rapa[J]. BMC Geno-mics, 2014, 15(1):426.
    [29]
    张惠源, 张志英. 中国中药资源志要[M]. 北京:科学出版社, 1994.
    [30]
    国家药典委员会. 中华人民共和国药典:2010年版[M]. 北京:中国医药科技出版社, 2010.
    [31]
    Katsu K, Suzuki R, Tsuchiya W, Inagaki N, Yamazaki T, et al. A new buckwheat dihydroflavonol 4-reductase (DFR), with a unique substrate binding structure, has altered substrate specificity[J]. BMC Plant Biol, 2017, 17(1):239-239.
  • Related Articles

    [1]Zhang Cai-Fei, Peng Shuai, Tian Jing, Hu Guang-Wan, Wang Qing-Feng. A new species and a newly recorded species of Impatiens (Balsaminaceae) from Yunnan, China[J]. Plant Science Journal, 2020, 38(4): 437-447. DOI: 10.11913/PSJ.2095-0837.2020.40437
    [2]Liu Wen-Jian, Wang Li-Yan, Wu Lei, Jin Xiao-Hua. Crepidium josephianum, a new record of Orchidaceae from China[J]. Plant Science Journal, 2020, 38(3): 316-319. DOI: 10.11913/PSJ.2095-0837.2020.30316
    [3]Peng Shuai, Hu Guang-Wan, Cong Yi-Yan, Wang Qing-Feng. Impatiens dalaiensis, a newly recorded species of Impatiens from Yunnan, China[J]. Plant Science Journal, 2019, 37(5): 569-571. DOI: 10.11913/PSJ.2095-0837.2019.50569
    [4]LIU Qiang, LI Jian-Wu, YIN Jian-Tao, TAN Yun-Hong, WEN Bin, HUANG Wen, YE De-Ping. Agrostophyllum planicaule,A New Record of Orchidaceae from Yunnan,China[J]. Plant Science Journal, 2012, (3): 299-300. DOI: 10.3724/SP.J.1142.2012.30299
    [5]WANG Yi, WANG Yan. Habenaria anomaliflora,a New Record of Orchidaceae from China[J]. Plant Science Journal, 2010, 28(6): 696-697.
    [6]HU Sheng, LIU Guo-Xiang, ZHOU Guang-Jie, MEI Hong, HU Zheng-Yu. Peridinium polonicum,A New Record of Freshwater Toxic Dinoflagellate from China[J]. Plant Science Journal, 2008, 26(5): 454-457.
    [7]YOU Qing-Min, WANG Quan-Xi. New Records of Pinnularia(Bacillariophyta) from Xinjiang, China[J]. Plant Science Journal, 2007, 25(6): 572-575.
    [8]CHEN Shan, HU Hong-Jun. New Varieties and New Records of Green Flagellates from China(Ⅱ)[J]. Plant Science Journal, 2003, 21(6): 492-496.
    [9]CHEN Shan, HU Hong-Jun. New Species and Records of Green Flagellates from China[J]. Plant Science Journal, 2002, 20(3): 191-198.
    [10]Ma Jilong, LI Yanjun. NEW RECORD OF THE CAREX FROM CHINA[J]. Plant Science Journal, 1998, 16(1): 32-32.
  • Cited by

    Periodical cited type(8)

    1. 师雪淇,程金花,管凝,侯芳,沈子雅. 喀斯特地区典型植被根系对优先流的影响. 水土保持研究. 2024(05): 73-83 .
    2. 庞榆,贺同鑫,孙建飞,宁文彩,裴广廷,胡宝清,王斌. 北热带喀斯特森林优势树种细根生物量估算模型构建. 植物生态学报. 2024(10): 1312-1325 .
    3. 覃桂丽,玉舒中. 降香黄檀根系性状对石灰岩石砾的适应响应. 西南林业大学学报(自然科学). 2023(03): 24-32 .
    4. 吴静,盛茂银,肖海龙,郭超,王霖娇. 西南喀斯特石漠化环境适生植物细根构型及其与细根和根际土壤养分计量特征的相关性. 生态学报. 2022(02): 677-687 .
    5. 林伟山,德科加,向雪梅,钱诗祎,魏希杰,冯廷旭. 天然草地植被-土壤系统碳、氮、磷(钾)库的时空分布格局研究进展. 青海畜牧兽医杂志. 2022(02): 45-51+68 .
    6. 杨慧,宁静,马洋,周孟霞,曹建华. 西南岩溶区植被碳循环研究进展. 广西植物. 2022(06): 903-913 .
    7. 薛建辉,周之栋,吴永波. 喀斯特石漠化山地退化土壤生态修复研究进展. 南京林业大学学报(自然科学版). 2022(06): 135-145 .
    8. 张新生,卢杰. 根系生物量及其对根际生态系统响应的研究进展. 江苏农业科学. 2021(17): 39-45 .

    Other cited types(9)

Catalog

    Article views (792) PDF downloads (653) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return