Advance Search
Chu Qing-Shuai, Liu Gui-Hua, Xing Wei. Concentrations of light metal elements in wetland plants and relationships with environmental factors in Qinghai-Tibet Plateau[J]. Plant Science Journal, 2021, 39(2): 121-131. DOI: 10.11913/PSJ.2095-0837.2021.20121
Citation: Chu Qing-Shuai, Liu Gui-Hua, Xing Wei. Concentrations of light metal elements in wetland plants and relationships with environmental factors in Qinghai-Tibet Plateau[J]. Plant Science Journal, 2021, 39(2): 121-131. DOI: 10.11913/PSJ.2095-0837.2021.20121

Concentrations of light metal elements in wetland plants and relationships with environmental factors in Qinghai-Tibet Plateau

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31870346, 31971479) and Wuhan Application Foundation Frontier Project (2020020601012287).

More Information
  • Received Date: December 01, 2020
  • Revised Date: December 21, 2020
  • Available Online: October 31, 2022
  • Published Date: April 27, 2021
  • Light metal elements play key roles in determining the growth and development of wetland plants. In this study, we measured the concentrations of eight light metal elements (Al, Mg, Ca, Sr, Ba, K, Na, and Li) in wetland plants of the Qinghai-Tibet Plateau through field investigation, and further elucidated their relationships with environmental factors. Results indicated that the wetland plants of the plateau exhibited significant differences in their accumulation of light metal elements. Among the 35 sampling sites, the plant concentrations of light metal elements varied greatly, with average concentrations in the order Li < Ba < Sr < Al < Mg < Na < Ca < K. Furthermore, the light metal element concentrations were higher in submerged plants than in hygrophyte and emergent plants. Pearson correlation analysis showed significant positive correlations among most light metal elements. In addition, most wetland plants showed positive correlations with light metal concentrations in sediment, but negative correlations with light metal concentrations in water. Thus, sediment appears to be the main source of light metal elements for wetland plants in the Qinghai-Tibet Plateau. Our results provide a theoretical basis for the maintenance of wetland ecosystem function and biodiversity conservation in the Qinghai-Tibet Plateau.
  • [1]
    陆景陵. 植物营养学[M]. 北京:中国农业大学出版社, 2003:13-16.
    [2]
    吕海祥, 田长彦, 张科. 施锂对罗布麻生长及叶绿素荧光参数的影响[J]. 草业学报, 2015, 24(1):81-87.

    Lü HY, Tian CY, Zhang K. Effects of Li application on the growth and chlorophyll fluorescence parameters of Apocynum venetum[J]. Acta Prataculturae Sinica, 2015, 24(1):81-87.
    [3]
    Hawrylak-Nowak B, Kalinowska M, Szymańska M. A study on selected physiological parameters of plants grown under lithium supplementation[J]. Biol Trace Elem Res, 2012, 149(3):425-430.
    [4]
    Park J, Shin KS. Novel method of polymer/low-melting-point metal alloy/light metal fiber composite fabrication[J]. Express Polymer Letters, 2016, 10(7):526-536.
    [5]
    张飞飞, 尚华, 杨江峰, 欧阳坤, 李晋平. 乙二胺改性轻金属铝-金属有机骨架材料用于CO2/CH4分离[J]. 无机化学学报, 2017, 33(9):1611-1617.

    Zhang FF, Shang H, Yang JF, Ouyang K, Li JP. Ethy-lenediamine modified light metal-organic framework mate-rial for CO2/CH4 separation[J]. Chinese Journal of Inorganic Chemistry, 2017, 33(9):1611-1617.
    [6]
    范玲玲, 周明扬, 屈晓妮, 孙浩, 权高峰, 刘宾. 石墨烯增强轻金属基复合材料的研究进展[J]. 热加工工艺, 2018, 47(4):8-13.

    Fan LL, Zhou MY, Qu XN, Sun H, Quan GF, Liu B. Research progress on graphene reinforced light metal matrix composite[J]. Hot Working Technology, 2018, 47(4):8-13.
    [7]
    赵登忠, 汪朝辉, 申邵洪, 谭德宝, 徐平, 李其江. 青藏高原典型河流与湖泊表层水体碳时空变化特征初步分析[J]. 长江科学院院报, 2018, 35(11):17-23.

    Zhao DZ, Wang CH, Shen SH, Tan DB, Xu P, Li QJ. Temporal and spatial changes of carbon in water from typical rivers and lakes over the Tibetan Plateau[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(11):17-23.
    [8]
    Zhao ZL, Zhang YL, Liu LS, Liu FG, Zhang HF. Recent changes in wetlands on the Tibetan Plateau:a review[J]. J Geogr Sci, 2015, 25(7):879-896.
    [9]
    刘志伟, 李胜男, 韦玮, 宋香静. 近三十年青藏高原湿地变化及其驱动力研究进展[J]. 生态学杂志, 2019, 38(3):856-862.

    Liu ZW, Li SN, Wei W, Song XJ. Research progress on alpine wetland changes and driving forces in Qinghai-Tibet Plateau during the last three decades[J]. Chinese Journal of Ecology, 2019, 38(3):856-862.
    [10]
    杨桂山, 马荣华, 张路, 姜加虎, 姚书春, 等. 中国湖泊现状及面临的重大问题与保护策略[J]. 湖泊科学, 2010, 22(6):3-14.

    Yang GS, Ma RH, Zhang L, Jiang JH, Yao SC, et al. Lake status, major problems and protection strategy in China[J]. Journal of Lake Sciences, 2010, 22(6):3-14.
    [11]
    Bornette G, Puijalon S. Macrophytes:Ecology of Aquatic Plants[M]. New Jersey:John Wiley & Sons Inc, 2009.
    [12]
    赵志龙, 张镱锂, 刘林山, 刘峰贵, 张海峰. 青藏高原湿地研究进展[J]. 地理科学进展, 2014, 33(11):1218-1230.

    Zhao ZL, Zhang YL, Liu LS, Liu FG, Zhang HF. Advances in research on wetlands of the Tibetan Plateau[J]. Progress in Geography, 2014, 33(11):1218-1230.
    [13]
    王婷, 张永超, 赵之重. 青藏高原退化高寒湿地植被群落结构和土壤养分变化特征[J]. 草业学报, 2020, 29(4):9-18.

    Wang T, Zhang YC, Zhao ZZ. Characteristics of the vegetation community and soil nutrient status in a degraded alpine wetland of Qinghai-Tibet Plateau[J]. Acta Prataculturae Sinica, 2020, 29(4):9-18.
    [14]
    旦增塔庆, 旭日, 魏学红, 魏达, 刘永稳, 王迎红. 西藏纳木错高寒草原、高寒草甸和沼泽化草甸主要温室气体通量对比研究[J]. 草地学报, 2014, 22(3):493-493.

    Tenzin-tarchen, Xu R, Wei XH, Wei D, Liu YW, Wang YH. Research on key greenhouse gas fluxes across alpine steppe, alpine meadow and swamp meadow in Nam Co, Tibetan Plateau[J]. Acta Agrestia Sinica, 2014, 22(3):493-493.
    [15]
    Ma WW, Alhassan AM, Wang YS, Li G, Wang H, Zhao JM. Greenhouse gas emissions as influenced by wetland vegetation degradation along a moisture gradient on the eastern Qinghai-Tibet Plateau of North-West China[J]. Nutr Cycl Agroecosyst, 2018, 112:335-354.
    [16]
    杨元合, 朴世龙. 青藏高原草地植被覆盖变化及其与气候因子的关系[J]. 植物生态学报, 2006, 30(1):1-8.

    Yang YH, Piao SL. Variations in grassland vegetation cover in relation to climatic factors on the Tibetan Plateau[J]. Journal of Plant Ecology, 2006, 30(1):1-8.
    [17]
    张晓宁, 刘振亚, 李丽萍, 王行, 张贇, 等. 大气增温对滇西北高原典型湿地湖滨带优势植物凋落物质量衰减的影响[J].生态学报, 2017, 37(23):7811-7820.

    Zhang XN, Liu ZY, Li LP, Wang H, Zhang Y, et al. Effect of experimental warming on the decomposition of litter from dominant lakeside plants in a typical wetland of Northwestern Yunnan Plateau, China[J]. Acta Ecologica Sinica, 2017, 37(23):7811-7820.
    [18]
    白永飞. 拉萨河流域主要湿地芦苇不同部位金属元素富集规律研究[D]. 拉萨:西藏大学, 2019.
    [19]
    Liu H, Liu GH, Xing W. Functional traits of submerged macrophytes in eutrophic shallow lakes affect their ecological functions[J]. Sci Total Environ, 2021, 760:143332.
    [20]
    Xing W, Wu HP, Hao BB, Huang WM, Liu GH. Bioaccumulation of heavy metals by submerged macrophytes:looking for hyperaccumulators in eutrophic lakes[J]. Environ Sci Technol, 2013, 47(9):4695-4703.
    [21]
    Xing W, Wu HP, Hao BB, Liu H, Liu GH. Trace element stoichiometry of submerged macrophytes in Yangtze floodplain lakes and Yunnan plateau lakes (China)[J]. Aquat Sci, 2017, 79(1):89-98.
    [22]
    Zu YQ, Li Y, Chen JJ, Chen HY, Qin L, Schvartz C. Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China[J]. Environ Int, 2005, 31(5):755-762.
    [23]
    Brooks RR. Plants that Hyperaccumulate Heavy Metals:Their Role in Phytoremediation, Microbiology, Archaeology Mineral Exploration and Phytomining[M]. Wallingford:CAB International, 1998:380.
    [24]
    陈开宁. 蓖齿眼子菜(Potamogeton pectinatus L.)生物、生态学及其在滇池富营养水体生态修复中的应用研究[D]. 南京:南京农业大学, 2002.
    [25]
    郭敏, 强科斌, 张晓庆, 龙瑞军, 赵连春, 刘英荣. 华扁穗草叶片的形态解剖结构观察[J]. 甘肃农业大学学报, 2007, 42(1):82-87.

    Guo M, Qiang KB, Zhang XQ, Long RJ, Zhao LC, Liu RY. Study on morphological anatomy of leaf in Blysmus sinocompressus[J]. Journal of Gansu Agricultural University, 2007, 42(1):82-87.
    [26]
    高晨光, 初敬华, 朱秋广. 杉叶藻营养器官的解剖构造及适应机理的研究[J]. 吉林师范大学学报(自然科学版), 2000(2):27-29.

    Gao CG, Chu JH, Zhu QG. The research in the vivisection structure and the adaptation mechanism of the negetative organs of the Hippuris vulgaris L.[J]. Jilin Normal University Journal(Natural Science Edition), 2000(2):27-29.
    [27]
    吴振斌. 水生植物与水体生态修复[M]. 北京:科学出版社, 2011:6.
    [28]
    Xing W, Bai GL, Wu HP, Liu H, Liu GH. Effect of submerged macrophytes on metal and metalloid concentrations in sediments and water of the Yunnan Plateau lakes in China[J]. J Soil Sediment, 2017, 17(10):1-10.
    [29]
    潘义宏, 王宏镔, 谷兆萍, 熊国焕, 易锋. 大型水生植物对重金属的富集与转移[J]. 生态学报, 2010, 30(23):6430-6441.

    Pan YH, Wang HB, Gu ZP, Xiong GH, Yi F. Accumulation and translocation of heavy metals by macrophytes[J]. Acta Ecologica Sinica, 2010, 30(23):6430-6441.
    [30]
    孙宇婷, 王海云, 张婷, 徐继军, 殷大聪. 武汉东湖水生植物重金属分布现状研究[J]. 长江科学院院报, 2016, 33(6):8-11.

    Sun YT, Wang HY, Zhang T, Xu JJ, Yin DC. Distribution of heavy metals in hydrophytes from the east lake of Wuhan[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(6):8-11.
    [31]
    黄亮, 李伟, 吴莹, 张经, 周菊珍. 长江中游若干湖泊中水生植物体内重金属分布[J]. 环境科学研究, 2002, 15(6):1-4.

    Huang L, Li W, Wu Y, Zhang J, Zhou JZ. Distribution of heavy metals in aquatic plants of some lakes in the middle reach of the Yangtze River[J]. Research of Environmental Sciences, 2002, 15(6):1-4.
    [32]
    侯亚明. 水生植物在污水净化中的应用研究进展[J]. 河南农业大学学报, 2004, 38(2):184-188.

    Hou YM. Study progress on purification of sewage by aquatic macrophytes[J]. Journal of Henan Agricultural University, 2004, 38(2):184-188.
    [33]
    Poschenrieder C, Gunsé B, Corrales I, Barceló J. A glance into aluminum toxicity and resistance in plants[J]. Sci Total Environ, 2008, 400(1-3):356-368.
    [34]
    Jacobson L, Moore DP, Hannapel RJ. Role of calcium in absorption of monovalent cations[J]. Plant Physiol, 1960, 35:352-357.
    [35]
    江世杰, 唐永金, 赵萍. 植物吸收Sr、Cs与其他元素的相关性研究[J]. 湖北农业科学, 2012, 51(21):4752-4755.

    Jiang SJ, Tang YJ, Zhao P. Correlated absorbtion between Sr or Cs and other elements of plants[J]. Hubei Agricultural Sciences, 2012, 51(21):4752-4755.
    [36]
    程禹敏. 受放射性核素Sr污染土壤的植物修复研究[D]. 上海:上海交通大学, 2017:40-42.
  • Related Articles

    [1]Wang Meng-Di, Yong Xu-Hong, Yin Min, Wang Qi-Zhi. Application of metabonomics in regulation study of plant secondary metabolites[J]. Plant Science Journal, 2023, 41(2): 269-278. DOI: 10.11913/PSJ.2095-0837.22175
    [2]Wei Li, Liu Jian-Li. Overview of research on protein subcellular localization in plants[J]. Plant Science Journal, 2021, 39(1): 93-101. DOI: 10.11913/PSJ.2095-0837.2021.10093
    [3]Liu Yan-Li, Zhou Yuan, Cao Dan, Ma Lin-Long, Gong Zi-Ming, Jin Xiao-Fang. Application analysis of predictors for plant protein subcellular localization based on proteome data of Camellia sinensis (L.) O. Ktze.[J]. Plant Science Journal, 2020, 38(5): 671-677. DOI: 10.11913/PSJ.2095-0837.2020.50671
    [4]Qi Tong-Hui, Gao Meng, Yuan Yang-Yang, Li Ming-Jun, Ma Feng-Wang, Ma Bai-Quan. Cloning, expression analysis, and subcellular position of MdPH1 related to acidity in Malus domestica Borkh[J]. Plant Science Journal, 2019, 37(6): 767-774. DOI: 10.11913/PSJ.2095-0837.2019.60767
    [5]Tang Yi-Xuan, Pi Li-Min, Zhu Yu-Xian. Epigenetic regulation of root stem cells in plants[J]. Plant Science Journal, 2019, 37(5): 682-689. DOI: 10.11913/PSJ.2095-0837.2019.50682
    [6]Nan Di-Na, Xue Min, Tang Kuan-Gang, Ren Mei-Yan, Wang Mao-Yan. Establishment of the cotyledon protoplast transient expression system of Ammopiptanthus mongolicus and subcellular localization of the AmDREB1 protein[J]. Plant Science Journal, 2018, 36(4): 562-568. DOI: 10.11913/PSJ.2095-0837.2018.40562
    [7]Feng Chen, Tang Hao-Ru, Jiang Lei-Yu, Wang Xiao-Rong, Chen Qing, Sun Bo. Advances in studies on carotenoids in Malus pumila[J]. Plant Science Journal, 2017, 35(6): 932-939. DOI: 10.11913/PSJ.2095-0837.2017.60932
    [8]Zhang Yu, Xu Zhi-Chao, Ji Ai-Jia, Song Jing-Yuan. Regulation of secondary metabolite biosynthesis by bZIP transcription factors in plants[J]. Plant Science Journal, 2017, 35(1): 128-137. DOI: 10.11913/PSJ.2095-0837.2017.10128
    [9]YANG Li-Xiang, WANG Zheng-Xun, KE De-Sen, WU Jin-Xiong. Subcellular Localization of Arabidopsis Hemoglobin 3[J]. Plant Science Journal, 2010, 28(4): 516-520.
    [10]CHEN Jin-Feng, ZHUANG Fei-Yun, QIAN Chun-Tao. Synthesis and Preliminary Characterization of A New Species (Amphidiploid) in Cucumis[J]. Plant Science Journal, 2001, 19(5): 357-362.
  • Cited by

    Periodical cited type(9)

    1. 沈冠同,刘亚琦,吉南希,张媛媛,王钦宏. 生物发酵法生产L-色氨酸的研究进展. 生物工程学报. 2024(03): 621-643 .
    2. 郝金倩,王宝驹,佟静,刘明池,武占会,王素娜,刘宁. 外源褪黑素对水培韭菜生长和品质的影响. 园艺学报. 2024(04): 847-858 .
    3. 张凯,杨泽良. 植物褪黑素及其缓解重金属胁迫研究. 智慧农业导刊. 2024(12): 65-68+73 .
    4. 代帆,黄晴晴,王灿,李雨箫,程琴. 外源褪黑素对镉胁迫下小麦幼苗生长的影响. 安徽农学通报. 2024(22): 1-6 .
    5. 宋聪慧,郭水欢,史小强,张寒彬,吴家锴,詹丽娟. 褪黑素调控果蔬采后保鲜研究进展. 食品科学. 2023(03): 228-236 .
    6. 郭明阳,贺曰林,潘凯婷,鲍方艳,应叶青. 基于UPLC-MS/MS的毛竹笋不同生长阶段差异代谢物分析. 食品科学. 2023(20): 283-291 .
    7. 王春林,王风琴. 褪黑素在植物抵御逆境胁迫过程中的作用. 安徽农业科学. 2023(21): 11-13 .
    8. 卢绍浩,刘崇盛,许利平,谢永恒,许高燕,吴兆明,张丽娜,高阳. 外源褪黑素对晾制期间雪茄烟叶膜脂过氧化水平的影响. 中国烟草学报. 2023(06): 82-92 .
    9. 尹永祺,周靖宇,方维明,何旭东. 响应面法优化芥菜芽苗富集褪黑素工艺. 现代食品. 2021(22): 131-133+138 .

    Other cited types(20)

Catalog

    Article views (555) PDF downloads (1229) Cited by(29)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return