Citation: | Jiang Shan, Yi Xing-Wan, Xu Ting-Liang, Yang Yi, Yu Chao, Luo Le, Cheng Tang-Ren, Wang Jia, Zhang Qi-Xiang, Pan Hui-Tang. Genetic analysis of petal number in Rosa[J]. Plant Science Journal, 2021, 39(2): 142-151. DOI: 10.11913/PSJ.2095-0837.2021.20142 |
[1] |
François L, Verdenaud M, Fu X, Ruleman D, Dubois A, Vandenbussche M, et al. A miR172 target-deficient AP2-like gene correlates with the double flower phenotype in roses[J]. Sci Rep, 2018, 8(1):12912.
|
[2] |
Debener T, Mattiesch L. Construction of a genetic linkage map for roses using RAPD and AFLP markers[J]. Theor Appl Genet, 1999, 99(5):891-899.
|
[3] |
Crespel L, Chirollet M, Durel C, Zhang D, Meynet J, Gudin S. Mapping of qualitative and quantitative phenotypic traits in Rosa using AFLP markers[J]. Theor Appl Genet, 2002, 105(8):1207-1214.
|
[4] |
Zhang L. Genetic linkage map in tetraploid and diploid rose[D]. Clemson:Clemson University, 2003.
|
[5] |
Hibrand Saint-Oyant L, Ruttink T, Hamama L, Kirov I, Lakhwani D, et al. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits[J]. Nat Plants, 2018, 4(7):473-484.
|
[6] |
Smulders MJM, Arens P, Bourke PM, Debener T, Linde M, et al. In the name of the rose:a roadmap for rose research in the genome era[J]. Hortic Res-England, 2019, 6(1):65.
|
[7] |
Dubois A, Raymond O, Maene M, Baudino S, Langlade NB, et al. Tinkering with the C-function:a molecular frame for the selection of double flowers in cultivated roses[J]. PLoS One, 2010, 5(2):e9288.
|
[8] |
范天刚, 张钢, 田亚然, 李永红. 低温诱导切花月季过度重瓣化的形态学观察[J]. 东北林业大学学报, 2014(9):116-121.
Fan TG, Zhang G, Tian YR, Li YH. Morphological observation of excessive petal Rosa hybrida induced by low temperature[J]. Journal of Northeast Forestry University, 2014(9):116-121.
|
[9] |
Kim S, Koh J, Yoo MJ, Kong HZ, Hu Y, et al. Expression of floral MADS-box genes in basal angiosperms:implications for the evolution of floral regulators[J]. Plant J, 2005, 43(5):724-744.
|
[10] |
Theißen G. Development of floral organ identity:stories from the MADS house[J]. Curr Opin Plant Biol, 2001, 4(1):75-85.
|
[11] |
Theißen G, Saedler H. Floral quartets[J]. Nature, 2001, 409(6819):469-471.
|
[12] |
Ma N, Chen W, Fan TG, Tian YR, Zhang S, et al. Low temperature-induced DNA hypermethylation attenuates expression of RhAG, an AGAMOUS homolog, and increases petal number in rose (Rosa hybrida)[J]. BMC Plant Biol, 2015, 15(1):237.
|
[13] |
Gattolin S, Cirilli M, Pacheco I,Ciacciulli A. Deletion of the miR172 target site in a TOE-type gene is a strong candidate variant for dominant double-flower trait in Rosaceae[J]. Plant J, 2018, 96(2):358-371.
|
[14] |
Han Y, Tang AY, Wan HH, Zhang TX, Cheng TR, et al. An APETALA2 homolog, RcAP2, regulates the number of rose petals derived from stamens and response to tempe-rature fluctuations[J]. Front Plant Sci, 2018, 9:481.
|
[15] |
Rusanov K, Kovacheva N, Rusanova M, Linde M, Debeber T, Atanassov I. Genetic control of flower petal number in Rosa×damascena Mill f. trigintipetala[J]. Biotechnol Biotechnol Equip, 2019, 33(1):597-604.
|
[16] |
Irish V. The ABC model of floral development[J]. Curr Biol, 2017, 27(17):R887-R890.
|
[17] |
车代弟, 张晓莹, 张金柱, 杨涛, 张微微, 等. 蔷薇属植物数量性状位点定位的研究进展[J]. 园艺学报, 2016, 43(9):1765-1775.
Cheng DD, Zhang XY, Zhang JZ, Yang T, Zhang WW, et al. A review of the quantitative trait loci in Rosa[J]. Acta Horticulturae Sinica, 2016, 43(9):1765-1775.
|
[18] |
王国良. 中国古老月季[M]. 北京:科学出版社, 2015.
|
[19] |
Tan JR, Wang J, Luo L, Yu C, Xu TL, et al. Genetic relationships and evolution of old Chinese garden roses based on SSRs and chromosome diversity[J]. Sci Rep, 2017, 7(1):15437.
|
[20] |
张佐双, 朱秀珍. 中国月季[M]. 北京:中国林业出版社, 2006.
|
[21] |
Roberts AV. Encyclopeadia of Rose Science[M]. London:Elsevier, 2003.
|
[22] |
Li BL, Wu R. Heterosis and genotype×environment interactions of juvenile aspens in two contrasting sites[J]. Can J For Res, 1997, 73(10):3671-3675.
|
[23] |
马杰, 徐婷婷, 苏江硕, 杨信程, 房伟民, 等. 菊花F1代舌状花耐寒性遗传变异与QTL定位[J]. 园艺学报, 2018, 45(4):717-724.
Ma J, Xu TT, Su JS, Yang XC, Fang WM, et al. Genetic variation and QTL mapping for cold tolerance of ray florets in an F1 population of Chrysanthemum morifolium[J]. Acta Horticulturae Sinica, 2018, 45(4):717-724.
|
[24] |
盖钧镒, 章元明, 王建康. 植物数量性状遗传体系[M]. 北京:科学出版社, 2003.
|
[25] |
曹锡文, 刘兵, 章元明. 植物数量性状分离分析Windows软件包SEA的研制[J]. 南京农业大学学报, 2013, 36(6):1-6.
Cao XW, Liu B, Zhang YM. SEA:a software package of segregation analysis of quantitative traits in plants[J]. Journal of Nanjing Agricultural University, 2013, 36(6):1-6.
|
[26] |
郭素枝. 扫描电镜技术及其应用[M]. 厦门:厦门大学出版社, 2006.
|
[27] |
周利君, 于超, 常笑, 万会花, 罗乐, 等. 月季F1代群体表型性状变异分析[J]. 植物研究, 2019, 39(1):133-140.
Zhou LJ, Yu C, Chang X, Wan HH, Luo L, et al. Variation analysis of phenotypic traits in F1 population of Rosa spp.[J]. Plant Research, 2019, 39(1):133-140.
|
[28] |
周长军. 大豆有性杂交F2代产量性状的遗传力分析与遗传相关研究[J]. 黑龙江农业科学, 2006(6):14-16.
Zhou CJ. Heritability analysis and genetic correlation of yield traits of sexual hybridization F2 generation in soybean[J]. Heilongjiang Agricultural Science, 2006(6):14-16.
|
[29] |
张中伟, 杨海龙, 付俊, 谢文锦, 丰光. 玉米粒长性状主基因+多基因遗传分析[J]. 作物杂志, 2019(5):37-40.
Zhang ZW, Yang HL, Fu J, Xie WJ, Feng G. Genetic analysis of main gene + polygene of maize kernel long character[J]. Crops, 2019(5):37-40.
|
[30] |
解松峰, 吉万全, 张耀元, 张俊杰, 胡卫国, 等. 小麦重要产量性状的主基因+多基因混合遗传分析[J]. 作物学报, 2020, 46(3):365-384.
Xie SF, Ji WQ, Zhang YY, Zhang JJ, Hu WG, et al. Genetic effects of important yield traits analyzed by mixture model of major gene plus polygene in wheat[J]. Journal of Crops, 2020, 46(3):365-384.
|
[31] |
Debener T, Malek BV, Mattiesch L, Kaufmann H. Genetic and molecular analysis of important characters in roses[J]. Acta Hortic, 2001(547):45-49.
|
[32] |
Hibrand-Saint Oyant L, Crespel L, Rajapakse S, Zhang L, Foucher F. Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowering traits[J]. Tree Genet Genomes, 2008, 4(1):11-23.
|
[33] |
黄秀, 田代科, 张微微, 曾宋君, 莫海波. 荷花"重瓣化"的花器官形态发育比较观察[J]. 植物分类与资源学报, 2014, 36(3):303-309.
Huang X, Tian DK, Zhang WW, Zeng SJ, Mo HB. Comparison of floral organ morphological development between single and double flowers in Nelumbo nucifera[J]. Plant Classification and Resources, 2014, 36(3):303-309.
|
[34] |
Zhang JJ, Zhu W. Comprehensive application of different methods of observation provides new insight into flower bud differentiation of double-flowered Paeonia lactiflora ‘Dafugui’[J]. HortScience, 2019, 54(1):28-37.
|
[35] |
罗敏蓉. 蓝堇草属(毛茛科)花形态发生的扫描电子显微镜观察[J]. 广西植物, 2020, 40(11):1645-1652.
Luo MR. Floral organogenesis in Leptopyrum (Ranunculaceae) with scanning electron microscopy[J]. Guangxi Plants, 2020, 40(11):1645-1652.
|
[36] |
张丹丹, 王莹, 荀志丽, 李丽红, 陆海, 刘頔. 单、重瓣玉簪花器官分化和花形态学比较研究[J]. 电子显微学报, 2014, 33(3):271-277.
Zhang DD, Wang Y, Xun ZL, Li LH, Lu H, Liu D. Comparative study on organ differentiation and flower morpho-logy of single and double Hosta[J]. Journal of Electron Microscopy, 2014, 33(3):271-277.
|
[1] | Wang Meng-Di, Yong Xu-Hong, Yin Min, Wang Qi-Zhi. Application of metabonomics in regulation study of plant secondary metabolites[J]. Plant Science Journal, 2023, 41(2): 269-278. DOI: 10.11913/PSJ.2095-0837.22175 |
[2] | Wei Li, Liu Jian-Li. Overview of research on protein subcellular localization in plants[J]. Plant Science Journal, 2021, 39(1): 93-101. DOI: 10.11913/PSJ.2095-0837.2021.10093 |
[3] | Liu Yan-Li, Zhou Yuan, Cao Dan, Ma Lin-Long, Gong Zi-Ming, Jin Xiao-Fang. Application analysis of predictors for plant protein subcellular localization based on proteome data of Camellia sinensis (L.) O. Ktze.[J]. Plant Science Journal, 2020, 38(5): 671-677. DOI: 10.11913/PSJ.2095-0837.2020.50671 |
[4] | Qi Tong-Hui, Gao Meng, Yuan Yang-Yang, Li Ming-Jun, Ma Feng-Wang, Ma Bai-Quan. Cloning, expression analysis, and subcellular position of MdPH1 related to acidity in Malus domestica Borkh[J]. Plant Science Journal, 2019, 37(6): 767-774. DOI: 10.11913/PSJ.2095-0837.2019.60767 |
[5] | Tang Yi-Xuan, Pi Li-Min, Zhu Yu-Xian. Epigenetic regulation of root stem cells in plants[J]. Plant Science Journal, 2019, 37(5): 682-689. DOI: 10.11913/PSJ.2095-0837.2019.50682 |
[6] | Nan Di-Na, Xue Min, Tang Kuan-Gang, Ren Mei-Yan, Wang Mao-Yan. Establishment of the cotyledon protoplast transient expression system of Ammopiptanthus mongolicus and subcellular localization of the AmDREB1 protein[J]. Plant Science Journal, 2018, 36(4): 562-568. DOI: 10.11913/PSJ.2095-0837.2018.40562 |
[7] | Feng Chen, Tang Hao-Ru, Jiang Lei-Yu, Wang Xiao-Rong, Chen Qing, Sun Bo. Advances in studies on carotenoids in Malus pumila[J]. Plant Science Journal, 2017, 35(6): 932-939. DOI: 10.11913/PSJ.2095-0837.2017.60932 |
[8] | Zhang Yu, Xu Zhi-Chao, Ji Ai-Jia, Song Jing-Yuan. Regulation of secondary metabolite biosynthesis by bZIP transcription factors in plants[J]. Plant Science Journal, 2017, 35(1): 128-137. DOI: 10.11913/PSJ.2095-0837.2017.10128 |
[9] | YANG Li-Xiang, WANG Zheng-Xun, KE De-Sen, WU Jin-Xiong. Subcellular Localization of Arabidopsis Hemoglobin 3[J]. Plant Science Journal, 2010, 28(4): 516-520. |
[10] | CHEN Jin-Feng, ZHUANG Fei-Yun, QIAN Chun-Tao. Synthesis and Preliminary Characterization of A New Species (Amphidiploid) in Cucumis[J]. Plant Science Journal, 2001, 19(5): 357-362. |