Advance Search
Jiang Shan, Yi Xing-Wan, Xu Ting-Liang, Yang Yi, Yu Chao, Luo Le, Cheng Tang-Ren, Wang Jia, Zhang Qi-Xiang, Pan Hui-Tang. Genetic analysis of petal number in Rosa[J]. Plant Science Journal, 2021, 39(2): 142-151. DOI: 10.11913/PSJ.2095-0837.2021.20142
Citation: Jiang Shan, Yi Xing-Wan, Xu Ting-Liang, Yang Yi, Yu Chao, Luo Le, Cheng Tang-Ren, Wang Jia, Zhang Qi-Xiang, Pan Hui-Tang. Genetic analysis of petal number in Rosa[J]. Plant Science Journal, 2021, 39(2): 142-151. DOI: 10.11913/PSJ.2095-0837.2021.20142

Genetic analysis of petal number in Rosa

Funds: 

This work was supported by grants from the Beijing Municipal Science and Technology Project (Z181100002418006) and National Key Research and Development Project (2019YFD1001001).

More Information
  • Received Date: August 23, 2020
  • Revised Date: November 05, 2020
  • Available Online: October 31, 2022
  • Published Date: April 27, 2021
  • The hybrid offspring of Rosa chinensis ‘Zhaiye Tengben Yuejihua’×R. chinensis ‘Old Blush’ were used as materials to elucidate the genetic basis of double-petaled flowers in roses. The segregation characteristics of petal number were analyzed. The anatomical observation of flower bud differentiation process of single flower and double flower were performed and the ultrastructure of epidermal cells in petal, stamen and petalized stamen of single flower and double flower were observed. Results showed that the number of petals in the hybrid population was significantly separated and ranged from five to 54. The genetic model of the number of petals, petalized stamens, and pistils was 2MG-AD (two pairs of additive-dominant-epistatic major gene control) and the genetic model of stamen number was 0MG (no major gene control). Double flowers in roses originated as stamens converting into petals. The key period of double flower formation was the late stage of stamen primordium when the stamens changed into petals. Epidermal cell morphology and fold degree of petalized stamens were between the petals of single flowers and the outer-wheel petals of double flowers.
  • [1]
    François L, Verdenaud M, Fu X, Ruleman D, Dubois A, Vandenbussche M, et al. A miR172 target-deficient AP2-like gene correlates with the double flower phenotype in roses[J]. Sci Rep, 2018, 8(1):12912.
    [2]
    Debener T, Mattiesch L. Construction of a genetic linkage map for roses using RAPD and AFLP markers[J]. Theor Appl Genet, 1999, 99(5):891-899.
    [3]
    Crespel L, Chirollet M, Durel C, Zhang D, Meynet J, Gudin S. Mapping of qualitative and quantitative phenotypic traits in Rosa using AFLP markers[J]. Theor Appl Genet, 2002, 105(8):1207-1214.
    [4]
    Zhang L. Genetic linkage map in tetraploid and diploid rose[D]. Clemson:Clemson University, 2003.
    [5]
    Hibrand Saint-Oyant L, Ruttink T, Hamama L, Kirov I, Lakhwani D, et al. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits[J]. Nat Plants, 2018, 4(7):473-484.
    [6]
    Smulders MJM, Arens P, Bourke PM, Debener T, Linde M, et al. In the name of the rose:a roadmap for rose research in the genome era[J]. Hortic Res-England, 2019, 6(1):65.
    [7]
    Dubois A, Raymond O, Maene M, Baudino S, Langlade NB, et al. Tinkering with the C-function:a molecular frame for the selection of double flowers in cultivated roses[J]. PLoS One, 2010, 5(2):e9288.
    [8]
    范天刚, 张钢, 田亚然, 李永红. 低温诱导切花月季过度重瓣化的形态学观察[J]. 东北林业大学学报, 2014(9):116-121.

    Fan TG, Zhang G, Tian YR, Li YH. Morphological observation of excessive petal Rosa hybrida induced by low temperature[J]. Journal of Northeast Forestry University, 2014(9):116-121.
    [9]
    Kim S, Koh J, Yoo MJ, Kong HZ, Hu Y, et al. Expression of floral MADS-box genes in basal angiosperms:implications for the evolution of floral regulators[J]. Plant J, 2005, 43(5):724-744.
    [10]
    Theißen G. Development of floral organ identity:stories from the MADS house[J]. Curr Opin Plant Biol, 2001, 4(1):75-85.
    [11]
    Theißen G, Saedler H. Floral quartets[J]. Nature, 2001, 409(6819):469-471.
    [12]
    Ma N, Chen W, Fan TG, Tian YR, Zhang S, et al. Low temperature-induced DNA hypermethylation attenuates expression of RhAG, an AGAMOUS homolog, and increases petal number in rose (Rosa hybrida)[J]. BMC Plant Biol, 2015, 15(1):237.
    [13]
    Gattolin S, Cirilli M, Pacheco I,Ciacciulli A. Deletion of the miR172 target site in a TOE-type gene is a strong candidate variant for dominant double-flower trait in Rosaceae[J]. Plant J, 2018, 96(2):358-371.
    [14]
    Han Y, Tang AY, Wan HH, Zhang TX, Cheng TR, et al. An APETALA2 homolog, RcAP2, regulates the number of rose petals derived from stamens and response to tempe-rature fluctuations[J]. Front Plant Sci, 2018, 9:481.
    [15]
    Rusanov K, Kovacheva N, Rusanova M, Linde M, Debeber T, Atanassov I. Genetic control of flower petal number in Rosa×damascena Mill f. trigintipetala[J]. Biotechnol Biotechnol Equip, 2019, 33(1):597-604.
    [16]
    Irish V. The ABC model of floral development[J]. Curr Biol, 2017, 27(17):R887-R890.
    [17]
    车代弟, 张晓莹, 张金柱, 杨涛, 张微微, 等. 蔷薇属植物数量性状位点定位的研究进展[J]. 园艺学报, 2016, 43(9):1765-1775.

    Cheng DD, Zhang XY, Zhang JZ, Yang T, Zhang WW, et al. A review of the quantitative trait loci in Rosa[J]. Acta Horticulturae Sinica, 2016, 43(9):1765-1775.
    [18]
    王国良. 中国古老月季[M]. 北京:科学出版社, 2015.
    [19]
    Tan JR, Wang J, Luo L, Yu C, Xu TL, et al. Genetic relationships and evolution of old Chinese garden roses based on SSRs and chromosome diversity[J]. Sci Rep, 2017, 7(1):15437.
    [20]
    张佐双, 朱秀珍. 中国月季[M]. 北京:中国林业出版社, 2006.
    [21]
    Roberts AV. Encyclopeadia of Rose Science[M]. London:Elsevier, 2003.
    [22]
    Li BL, Wu R. Heterosis and genotype×environment interactions of juvenile aspens in two contrasting sites[J]. Can J For Res, 1997, 73(10):3671-3675.
    [23]
    马杰, 徐婷婷, 苏江硕, 杨信程, 房伟民, 等. 菊花F1代舌状花耐寒性遗传变异与QTL定位[J]. 园艺学报, 2018, 45(4):717-724.

    Ma J, Xu TT, Su JS, Yang XC, Fang WM, et al. Genetic variation and QTL mapping for cold tolerance of ray florets in an F1 population of Chrysanthemum morifolium[J]. Acta Horticulturae Sinica, 2018, 45(4):717-724.
    [24]
    盖钧镒, 章元明, 王建康. 植物数量性状遗传体系[M]. 北京:科学出版社, 2003.
    [25]
    曹锡文, 刘兵, 章元明. 植物数量性状分离分析Windows软件包SEA的研制[J]. 南京农业大学学报, 2013, 36(6):1-6.

    Cao XW, Liu B, Zhang YM. SEA:a software package of segregation analysis of quantitative traits in plants[J]. Journal of Nanjing Agricultural University, 2013, 36(6):1-6.
    [26]
    郭素枝. 扫描电镜技术及其应用[M]. 厦门:厦门大学出版社, 2006.
    [27]
    周利君, 于超, 常笑, 万会花, 罗乐, 等. 月季F1代群体表型性状变异分析[J]. 植物研究, 2019, 39(1):133-140.

    Zhou LJ, Yu C, Chang X, Wan HH, Luo L, et al. Variation analysis of phenotypic traits in F1 population of Rosa spp.[J]. Plant Research, 2019, 39(1):133-140.
    [28]
    周长军. 大豆有性杂交F2代产量性状的遗传力分析与遗传相关研究[J]. 黑龙江农业科学, 2006(6):14-16.

    Zhou CJ. Heritability analysis and genetic correlation of yield traits of sexual hybridization F2 generation in soybean[J]. Heilongjiang Agricultural Science, 2006(6):14-16.
    [29]
    张中伟, 杨海龙, 付俊, 谢文锦, 丰光. 玉米粒长性状主基因+多基因遗传分析[J]. 作物杂志, 2019(5):37-40.

    Zhang ZW, Yang HL, Fu J, Xie WJ, Feng G. Genetic analysis of main gene + polygene of maize kernel long character[J]. Crops, 2019(5):37-40.
    [30]
    解松峰, 吉万全, 张耀元, 张俊杰, 胡卫国, 等. 小麦重要产量性状的主基因+多基因混合遗传分析[J]. 作物学报, 2020, 46(3):365-384.

    Xie SF, Ji WQ, Zhang YY, Zhang JJ, Hu WG, et al. Genetic effects of important yield traits analyzed by mixture model of major gene plus polygene in wheat[J]. Journal of Crops, 2020, 46(3):365-384.
    [31]
    Debener T, Malek BV, Mattiesch L, Kaufmann H. Genetic and molecular analysis of important characters in roses[J]. Acta Hortic, 2001(547):45-49.
    [32]
    Hibrand-Saint Oyant L, Crespel L, Rajapakse S, Zhang L, Foucher F. Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowering traits[J]. Tree Genet Genomes, 2008, 4(1):11-23.
    [33]
    黄秀, 田代科, 张微微, 曾宋君, 莫海波. 荷花"重瓣化"的花器官形态发育比较观察[J]. 植物分类与资源学报, 2014, 36(3):303-309.

    Huang X, Tian DK, Zhang WW, Zeng SJ, Mo HB. Comparison of floral organ morphological development between single and double flowers in Nelumbo nucifera[J]. Plant Classification and Resources, 2014, 36(3):303-309.
    [34]
    Zhang JJ, Zhu W. Comprehensive application of different methods of observation provides new insight into flower bud differentiation of double-flowered Paeonia lactiflora ‘Dafugui’[J]. HortScience, 2019, 54(1):28-37.
    [35]
    罗敏蓉. 蓝堇草属(毛茛科)花形态发生的扫描电子显微镜观察[J]. 广西植物, 2020, 40(11):1645-1652.

    Luo MR. Floral organogenesis in Leptopyrum (Ranunculaceae) with scanning electron microscopy[J]. Guangxi Plants, 2020, 40(11):1645-1652.
    [36]
    张丹丹, 王莹, 荀志丽, 李丽红, 陆海, 刘頔. 单、重瓣玉簪花器官分化和花形态学比较研究[J]. 电子显微学报, 2014, 33(3):271-277.

    Zhang DD, Wang Y, Xun ZL, Li LH, Lu H, Liu D. Comparative study on organ differentiation and flower morpho-logy of single and double Hosta[J]. Journal of Electron Microscopy, 2014, 33(3):271-277.
  • Related Articles

    [1]Wang Meng-Di, Yong Xu-Hong, Yin Min, Wang Qi-Zhi. Application of metabonomics in regulation study of plant secondary metabolites[J]. Plant Science Journal, 2023, 41(2): 269-278. DOI: 10.11913/PSJ.2095-0837.22175
    [2]Wei Li, Liu Jian-Li. Overview of research on protein subcellular localization in plants[J]. Plant Science Journal, 2021, 39(1): 93-101. DOI: 10.11913/PSJ.2095-0837.2021.10093
    [3]Liu Yan-Li, Zhou Yuan, Cao Dan, Ma Lin-Long, Gong Zi-Ming, Jin Xiao-Fang. Application analysis of predictors for plant protein subcellular localization based on proteome data of Camellia sinensis (L.) O. Ktze.[J]. Plant Science Journal, 2020, 38(5): 671-677. DOI: 10.11913/PSJ.2095-0837.2020.50671
    [4]Qi Tong-Hui, Gao Meng, Yuan Yang-Yang, Li Ming-Jun, Ma Feng-Wang, Ma Bai-Quan. Cloning, expression analysis, and subcellular position of MdPH1 related to acidity in Malus domestica Borkh[J]. Plant Science Journal, 2019, 37(6): 767-774. DOI: 10.11913/PSJ.2095-0837.2019.60767
    [5]Tang Yi-Xuan, Pi Li-Min, Zhu Yu-Xian. Epigenetic regulation of root stem cells in plants[J]. Plant Science Journal, 2019, 37(5): 682-689. DOI: 10.11913/PSJ.2095-0837.2019.50682
    [6]Nan Di-Na, Xue Min, Tang Kuan-Gang, Ren Mei-Yan, Wang Mao-Yan. Establishment of the cotyledon protoplast transient expression system of Ammopiptanthus mongolicus and subcellular localization of the AmDREB1 protein[J]. Plant Science Journal, 2018, 36(4): 562-568. DOI: 10.11913/PSJ.2095-0837.2018.40562
    [7]Feng Chen, Tang Hao-Ru, Jiang Lei-Yu, Wang Xiao-Rong, Chen Qing, Sun Bo. Advances in studies on carotenoids in Malus pumila[J]. Plant Science Journal, 2017, 35(6): 932-939. DOI: 10.11913/PSJ.2095-0837.2017.60932
    [8]Zhang Yu, Xu Zhi-Chao, Ji Ai-Jia, Song Jing-Yuan. Regulation of secondary metabolite biosynthesis by bZIP transcription factors in plants[J]. Plant Science Journal, 2017, 35(1): 128-137. DOI: 10.11913/PSJ.2095-0837.2017.10128
    [9]YANG Li-Xiang, WANG Zheng-Xun, KE De-Sen, WU Jin-Xiong. Subcellular Localization of Arabidopsis Hemoglobin 3[J]. Plant Science Journal, 2010, 28(4): 516-520.
    [10]CHEN Jin-Feng, ZHUANG Fei-Yun, QIAN Chun-Tao. Synthesis and Preliminary Characterization of A New Species (Amphidiploid) in Cucumis[J]. Plant Science Journal, 2001, 19(5): 357-362.
  • Cited by

    Periodical cited type(9)

    1. 沈冠同,刘亚琦,吉南希,张媛媛,王钦宏. 生物发酵法生产L-色氨酸的研究进展. 生物工程学报. 2024(03): 621-643 .
    2. 郝金倩,王宝驹,佟静,刘明池,武占会,王素娜,刘宁. 外源褪黑素对水培韭菜生长和品质的影响. 园艺学报. 2024(04): 847-858 .
    3. 张凯,杨泽良. 植物褪黑素及其缓解重金属胁迫研究. 智慧农业导刊. 2024(12): 65-68+73 .
    4. 代帆,黄晴晴,王灿,李雨箫,程琴. 外源褪黑素对镉胁迫下小麦幼苗生长的影响. 安徽农学通报. 2024(22): 1-6 .
    5. 宋聪慧,郭水欢,史小强,张寒彬,吴家锴,詹丽娟. 褪黑素调控果蔬采后保鲜研究进展. 食品科学. 2023(03): 228-236 .
    6. 郭明阳,贺曰林,潘凯婷,鲍方艳,应叶青. 基于UPLC-MS/MS的毛竹笋不同生长阶段差异代谢物分析. 食品科学. 2023(20): 283-291 .
    7. 王春林,王风琴. 褪黑素在植物抵御逆境胁迫过程中的作用. 安徽农业科学. 2023(21): 11-13 .
    8. 卢绍浩,刘崇盛,许利平,谢永恒,许高燕,吴兆明,张丽娜,高阳. 外源褪黑素对晾制期间雪茄烟叶膜脂过氧化水平的影响. 中国烟草学报. 2023(06): 82-92 .
    9. 尹永祺,周靖宇,方维明,何旭东. 响应面法优化芥菜芽苗富集褪黑素工艺. 现代食品. 2021(22): 131-133+138 .

    Other cited types(20)

Catalog

    Article views (774) PDF downloads (504) Cited by(29)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return