Citation: | Ding Ya-Dong, Shu Huang-Ying, Gao Chong-Lun, Hao Yuan-Yuan, Cheng Shan-Han, Zhu Guo-Peng, Wang Zhi-Wei. Analysis of heat shock protein 70 gene family in Capsicum chinense Jacq.[J]. Plant Science Journal, 2021, 39(2): 152-162. DOI: 10.11913/PSJ.2095-0837.2021.20152 |
[1] |
Han S, Liu Y, Chang A. Cytoplasmic Hsp70 promotes ubiquitination for endoplasmic reticulum-associated degradation of a misfolded mutant of the yeast plasma membrane ATPase, PMA1[J]. J Biol Chem, 2007, 282(36):26140-26149.
|
[2] |
Hendrick JP, Hartl FU. Molecular chaperone functions of heat-shock proteins[J]. Annu Rev Biochem, 2003, 62:349-384.
|
[3] |
Wang A, Yu XH, Yun M, Ying L, Liu GQ, et al. Overexpression of a small heat-shock-protein gene enhances tolerance to abiotic stresses in rice[J]. Plant Breeding, 2015, 134(4):384-393.
|
[4] |
Georgopoulos C, Welch WJ. Role of the major heat shock proteins as molecular chaperones[J]. Annu Rev Cell Biol, 1993, 9(1):601-634.
|
[5] |
Waters RER. Comparative genomic analysis of the Hsp70s from five diverse photosynthetic eukaryotes[J]. Cell Stress Chaperon, 2007, 12(2):172-185.
|
[6] |
Guo M, Liu JH, Ma X, Zhai YF, Gong ZH, Lu MH. Genome-wide analysis of the HSP70 family genes in pepper (Capsicum annuum L.) and functional identification of CaHsp70-2 involvement in heat stress[J]. Plant Sci, 2016, 252:246-256.
|
[7] |
Huang XY, Tao P, Li BY, Wang WH, Yue ZC, et al. Genome-wide identification, classification, and analysis of heat shock transcription factor family in Chinese cabbage (Brassica rapa pekinensis)[J]. Genet Mol Res, 2015, 14(1):2189-204.
|
[8] |
Latijnhouwers M, Mller XSG. Arabidopsis stromal 70-kDa heat shock proteins are essential for chloroplast development[J]. Planta, 2010, 232(3):567-578.
|
[9] |
Tiwari LD, Khungar L, Grover A. AtHsc70-1 negatively regulates the basal heat tolerance in Arabidopsis thaliana through affecting the activity of HsfAs and Hsp101[J]. Plant J, 2020, 103(6):2069-2083.
|
[10] |
Cazalé AC, Clément M, Serge C, Marie AR, Nathalie P, et al. Altered expression of cytosolic/nuclear HSC70-1 molecular chaperone affects development and abiotic stress tolerance in Arabidopsis thaliana[J]. J Exp Bot, 2009, 60(9):2653-2664.
|
[11] |
Chaston J, Smits C, Aragão D, Andrew W, Ahsan B, et al. Structural and functional insights into the evolution and stress adaptation of typeⅡ chaperonins.[J]. Structure, 2016, 24(3):364-374.
|
[12] |
Seo K, Choi E, Lee D, Jeong DE, Jang SK, Lee SJ. Heat shock factor 1 mediates the longevity conferred by inhibition of TOR and insulin/IGF-1 signaling pathways in C. elegans[J]. Aging Cell, 2013, 12(6):1073-1081.
|
[13] |
贾志银. 辣椒耐热生理生化特性及谷胱甘肽处理效应研究[D]. 咸阳:西北农林科技大学, 2010.
|
[14] |
Pagamas P, Nawata E. Sensitive stages of fruit and seed development of chili pepper(Capsicum annuum L. var. Shishito) exposed to high-temperature stress[J]. Scihortic-Amsterdam, 2008, 117(1):21-25.
|
[15] |
胡能兵, 隋益虎, 舒英杰, 何克勤. 高温胁迫对不同热敏型辣椒同工酶及DNA甲基化的影响[J]. 西北植物学报, 2016, 36(1):137-144.
Hu NB, Sui YH, Shu YJ, He KQ. Effect of heat stress on isoenzyme and DNA methylation of different heat-sensitive peppers[J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(1):137-144.
|
[16] |
Li QB, Haskell DW, Guy CL. Coordinate and non-coordinate expression of the stress 70 family and other molecular chaperones at high and low temperature in spinach and tomato[J]. Plant Mol Biol, 1999, 39(1):21-34.
|
[17] |
Liu J, Pang X, Cheng Y, Yin YH, Zhang Q, et al. The HSP70 gene family in Solanum tuberosum:genome-wide identification, phylogeny, and expression patterns[J]. Sci Rep-UK, 2018, 8(8):1025-1039.
|
[18] |
Kim S, Park J, Yeom SI, Kim YM, Seo E, et al. New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication[J]. Genome Biol, 2017, 18:210.
|
[19] |
高崇伦, 黄家权, 成善汉, 汪志伟, 尹黎燕. 中国辣椒热胁迫转录因子的全基因组鉴定及热胁迫响应的初步分析[J]. 植物科学学报, 2020, 38(2):249-259.
Gao CL, Huang JQ, Cheng SH, Wang ZW, Yin LY. Genome-wide identification of heat stress transcription factors and preliminary analysis of heat stress responses in Capsicum chinense Jacq.[J]. Plant Science Journal, 2020, 38(2):249-259.
|
[20] |
Sung DY, Kaplan F, Guy CL. Plant Hsp70 molecular chaperones:protein structure, gene family, expression and function[J]. Physiol Plantarum, 2010, 113(4):443-451.
|
[21] |
Sung DY, Guy CL. Comprehensive expression profile analysis of the Arabidopsis HSP70 gene family[J]. Plant Physiol, 2001, 126(2):789-800.
|
[22] |
Guy CL, Li QB. The organization and evolution of the spinach stress 70 molecular chaperone gene family[J]. Plant Cell, 1998, 10(4):539-556.
|
[23] |
Zhang L, Zhao HK, Dong QL, Zhang YY, Wang YM, et al. Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean(Glycine max L.)[J]. Front Plant Sci, 2015, 6:773.
|
[24] |
Kose S, Furuta M, Imamoto N. Hikeshi, a nuclear import carrier for Hsp70s, protects cells from heat shock-induced nuclear damage[J]. Cell, 2012, 149(3):578-589.
|
[25] |
Semon M, Wolfe KH. Consequences of genome duplication[J]. Curr Opin Genet Dev, 2007, 17(6):505-512.
|
[26] |
Sarkar NK, Kundnani P, Grover A. Functional analysis of Hsp70 superfamily proteins of rice (Oryza sativa)[J]. Cell Stress Chaperon, 2013, 18(4):427-437.
|
[27] |
Zhang CX, Feng BH, Chen TT, Zhang XF, Tao LX, Fu GF. Sugars, antioxidant enzymes and IAA mediate salicylic acid to prevent rice spikelet degeneration caused by heat stress[J]. Plant Growth Regul, 2017, 83(2):313-323.
|
[28] |
Guy CL. Physiological and molecular assessment of altered expression of Hsc70-1 in Arabidopsis. Evidence for pleiotropic consequences[J]. Plant Physiol, 2003, 132(2):979-987.
|
[1] | Wang Meng-Di, Yong Xu-Hong, Yin Min, Wang Qi-Zhi. Application of metabonomics in regulation study of plant secondary metabolites[J]. Plant Science Journal, 2023, 41(2): 269-278. DOI: 10.11913/PSJ.2095-0837.22175 |
[2] | Wei Li, Liu Jian-Li. Overview of research on protein subcellular localization in plants[J]. Plant Science Journal, 2021, 39(1): 93-101. DOI: 10.11913/PSJ.2095-0837.2021.10093 |
[3] | Liu Yan-Li, Zhou Yuan, Cao Dan, Ma Lin-Long, Gong Zi-Ming, Jin Xiao-Fang. Application analysis of predictors for plant protein subcellular localization based on proteome data of Camellia sinensis (L.) O. Ktze.[J]. Plant Science Journal, 2020, 38(5): 671-677. DOI: 10.11913/PSJ.2095-0837.2020.50671 |
[4] | Qi Tong-Hui, Gao Meng, Yuan Yang-Yang, Li Ming-Jun, Ma Feng-Wang, Ma Bai-Quan. Cloning, expression analysis, and subcellular position of MdPH1 related to acidity in Malus domestica Borkh[J]. Plant Science Journal, 2019, 37(6): 767-774. DOI: 10.11913/PSJ.2095-0837.2019.60767 |
[5] | Tang Yi-Xuan, Pi Li-Min, Zhu Yu-Xian. Epigenetic regulation of root stem cells in plants[J]. Plant Science Journal, 2019, 37(5): 682-689. DOI: 10.11913/PSJ.2095-0837.2019.50682 |
[6] | Nan Di-Na, Xue Min, Tang Kuan-Gang, Ren Mei-Yan, Wang Mao-Yan. Establishment of the cotyledon protoplast transient expression system of Ammopiptanthus mongolicus and subcellular localization of the AmDREB1 protein[J]. Plant Science Journal, 2018, 36(4): 562-568. DOI: 10.11913/PSJ.2095-0837.2018.40562 |
[7] | Feng Chen, Tang Hao-Ru, Jiang Lei-Yu, Wang Xiao-Rong, Chen Qing, Sun Bo. Advances in studies on carotenoids in Malus pumila[J]. Plant Science Journal, 2017, 35(6): 932-939. DOI: 10.11913/PSJ.2095-0837.2017.60932 |
[8] | Zhang Yu, Xu Zhi-Chao, Ji Ai-Jia, Song Jing-Yuan. Regulation of secondary metabolite biosynthesis by bZIP transcription factors in plants[J]. Plant Science Journal, 2017, 35(1): 128-137. DOI: 10.11913/PSJ.2095-0837.2017.10128 |
[9] | YANG Li-Xiang, WANG Zheng-Xun, KE De-Sen, WU Jin-Xiong. Subcellular Localization of Arabidopsis Hemoglobin 3[J]. Plant Science Journal, 2010, 28(4): 516-520. |
[10] | CHEN Jin-Feng, ZHUANG Fei-Yun, QIAN Chun-Tao. Synthesis and Preliminary Characterization of A New Species (Amphidiploid) in Cucumis[J]. Plant Science Journal, 2001, 19(5): 357-362. |