Advance Search
Ding Ya-Dong, Shu Huang-Ying, Gao Chong-Lun, Hao Yuan-Yuan, Cheng Shan-Han, Zhu Guo-Peng, Wang Zhi-Wei. Analysis of heat shock protein 70 gene family in Capsicum chinense Jacq.[J]. Plant Science Journal, 2021, 39(2): 152-162. DOI: 10.11913/PSJ.2095-0837.2021.20152
Citation: Ding Ya-Dong, Shu Huang-Ying, Gao Chong-Lun, Hao Yuan-Yuan, Cheng Shan-Han, Zhu Guo-Peng, Wang Zhi-Wei. Analysis of heat shock protein 70 gene family in Capsicum chinense Jacq.[J]. Plant Science Journal, 2021, 39(2): 152-162. DOI: 10.11913/PSJ.2095-0837.2021.20152

Analysis of heat shock protein 70 gene family in Capsicum chinense Jacq.

Funds: 

This work was supported by grants from the National Key Research and Development Program of China (2018YFD1000800), National Natural Science Foundation of China (31760578), Innovative Research Projects for Postgraduates in Hainan Province (Hyb2019-05), and Startup Funding from Hainan University (KYQD1656).

More Information
  • Received Date: September 23, 2020
  • Revised Date: November 29, 2020
  • Available Online: October 31, 2022
  • Published Date: April 27, 2021
  • Based on genomic data of Capsicum chinense Jacq., whole genome identification of the HSP70 gene family was carried out using bioinformatics. In total, 20 HSP70 genes were identified, with coding protein length ranging from 516 to 854 aa and molecular weight ranging from 56.21 to 94.26 kD. Phylogenetic analysis showed that the HSP70 gene family was divided into three subfamilies:A, B, and C. Comparative transcriptome analysis showed that 16 HSP70 genes were responsive to heat stress.
  • [1]
    Han S, Liu Y, Chang A. Cytoplasmic Hsp70 promotes ubiquitination for endoplasmic reticulum-associated degradation of a misfolded mutant of the yeast plasma membrane ATPase, PMA1[J]. J Biol Chem, 2007, 282(36):26140-26149.
    [2]
    Hendrick JP, Hartl FU. Molecular chaperone functions of heat-shock proteins[J]. Annu Rev Biochem, 2003, 62:349-384.
    [3]
    Wang A, Yu XH, Yun M, Ying L, Liu GQ, et al. Overexpression of a small heat-shock-protein gene enhances tolerance to abiotic stresses in rice[J]. Plant Breeding, 2015, 134(4):384-393.
    [4]
    Georgopoulos C, Welch WJ. Role of the major heat shock proteins as molecular chaperones[J]. Annu Rev Cell Biol, 1993, 9(1):601-634.
    [5]
    Waters RER. Comparative genomic analysis of the Hsp70s from five diverse photosynthetic eukaryotes[J]. Cell Stress Chaperon, 2007, 12(2):172-185.
    [6]
    Guo M, Liu JH, Ma X, Zhai YF, Gong ZH, Lu MH. Genome-wide analysis of the HSP70 family genes in pepper (Capsicum annuum L.) and functional identification of CaHsp70-2 involvement in heat stress[J]. Plant Sci, 2016, 252:246-256.
    [7]
    Huang XY, Tao P, Li BY, Wang WH, Yue ZC, et al. Genome-wide identification, classification, and analysis of heat shock transcription factor family in Chinese cabbage (Brassica rapa pekinensis)[J]. Genet Mol Res, 2015, 14(1):2189-204.
    [8]
    Latijnhouwers M, Mller XSG. Arabidopsis stromal 70-kDa heat shock proteins are essential for chloroplast development[J]. Planta, 2010, 232(3):567-578.
    [9]
    Tiwari LD, Khungar L, Grover A. AtHsc70-1 negatively regulates the basal heat tolerance in Arabidopsis thaliana through affecting the activity of HsfAs and Hsp101[J]. Plant J, 2020, 103(6):2069-2083.
    [10]
    Cazalé AC, Clément M, Serge C, Marie AR, Nathalie P, et al. Altered expression of cytosolic/nuclear HSC70-1 molecular chaperone affects development and abiotic stress tolerance in Arabidopsis thaliana[J]. J Exp Bot, 2009, 60(9):2653-2664.
    [11]
    Chaston J, Smits C, Aragão D, Andrew W, Ahsan B, et al. Structural and functional insights into the evolution and stress adaptation of typeⅡ chaperonins.[J]. Structure, 2016, 24(3):364-374.
    [12]
    Seo K, Choi E, Lee D, Jeong DE, Jang SK, Lee SJ. Heat shock factor 1 mediates the longevity conferred by inhibition of TOR and insulin/IGF-1 signaling pathways in C. elegans[J]. Aging Cell, 2013, 12(6):1073-1081.
    [13]
    贾志银. 辣椒耐热生理生化特性及谷胱甘肽处理效应研究[D]. 咸阳:西北农林科技大学, 2010.
    [14]
    Pagamas P, Nawata E. Sensitive stages of fruit and seed development of chili pepper(Capsicum annuum L. var. Shishito) exposed to high-temperature stress[J]. Scihortic-Amsterdam, 2008, 117(1):21-25.
    [15]
    胡能兵, 隋益虎, 舒英杰, 何克勤. 高温胁迫对不同热敏型辣椒同工酶及DNA甲基化的影响[J]. 西北植物学报, 2016, 36(1):137-144.

    Hu NB, Sui YH, Shu YJ, He KQ. Effect of heat stress on isoenzyme and DNA methylation of different heat-sensitive peppers[J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(1):137-144.
    [16]
    Li QB, Haskell DW, Guy CL. Coordinate and non-coordinate expression of the stress 70 family and other molecular chaperones at high and low temperature in spinach and tomato[J]. Plant Mol Biol, 1999, 39(1):21-34.
    [17]
    Liu J, Pang X, Cheng Y, Yin YH, Zhang Q, et al. The HSP70 gene family in Solanum tuberosum:genome-wide identification, phylogeny, and expression patterns[J]. Sci Rep-UK, 2018, 8(8):1025-1039.
    [18]
    Kim S, Park J, Yeom SI, Kim YM, Seo E, et al. New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication[J]. Genome Biol, 2017, 18:210.
    [19]
    高崇伦, 黄家权, 成善汉, 汪志伟, 尹黎燕. 中国辣椒热胁迫转录因子的全基因组鉴定及热胁迫响应的初步分析[J]. 植物科学学报, 2020, 38(2):249-259.

    Gao CL, Huang JQ, Cheng SH, Wang ZW, Yin LY. Genome-wide identification of heat stress transcription factors and preliminary analysis of heat stress responses in Capsicum chinense Jacq.[J]. Plant Science Journal, 2020, 38(2):249-259.
    [20]
    Sung DY, Kaplan F, Guy CL. Plant Hsp70 molecular chaperones:protein structure, gene family, expression and function[J]. Physiol Plantarum, 2010, 113(4):443-451.
    [21]
    Sung DY, Guy CL. Comprehensive expression profile analysis of the Arabidopsis HSP70 gene family[J]. Plant Physiol, 2001, 126(2):789-800.
    [22]
    Guy CL, Li QB. The organization and evolution of the spinach stress 70 molecular chaperone gene family[J]. Plant Cell, 1998, 10(4):539-556.
    [23]
    Zhang L, Zhao HK, Dong QL, Zhang YY, Wang YM, et al. Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean(Glycine max L.)[J]. Front Plant Sci, 2015, 6:773.
    [24]
    Kose S, Furuta M, Imamoto N. Hikeshi, a nuclear import carrier for Hsp70s, protects cells from heat shock-induced nuclear damage[J]. Cell, 2012, 149(3):578-589.
    [25]
    Semon M, Wolfe KH. Consequences of genome duplication[J]. Curr Opin Genet Dev, 2007, 17(6):505-512.
    [26]
    Sarkar NK, Kundnani P, Grover A. Functional analysis of Hsp70 superfamily proteins of rice (Oryza sativa)[J]. Cell Stress Chaperon, 2013, 18(4):427-437.
    [27]
    Zhang CX, Feng BH, Chen TT, Zhang XF, Tao LX, Fu GF. Sugars, antioxidant enzymes and IAA mediate salicylic acid to prevent rice spikelet degeneration caused by heat stress[J]. Plant Growth Regul, 2017, 83(2):313-323.
    [28]
    Guy CL. Physiological and molecular assessment of altered expression of Hsc70-1 in Arabidopsis. Evidence for pleiotropic consequences[J]. Plant Physiol, 2003, 132(2):979-987.
  • Related Articles

    [1]Wang Meng-Di, Yong Xu-Hong, Yin Min, Wang Qi-Zhi. Application of metabonomics in regulation study of plant secondary metabolites[J]. Plant Science Journal, 2023, 41(2): 269-278. DOI: 10.11913/PSJ.2095-0837.22175
    [2]Wei Li, Liu Jian-Li. Overview of research on protein subcellular localization in plants[J]. Plant Science Journal, 2021, 39(1): 93-101. DOI: 10.11913/PSJ.2095-0837.2021.10093
    [3]Liu Yan-Li, Zhou Yuan, Cao Dan, Ma Lin-Long, Gong Zi-Ming, Jin Xiao-Fang. Application analysis of predictors for plant protein subcellular localization based on proteome data of Camellia sinensis (L.) O. Ktze.[J]. Plant Science Journal, 2020, 38(5): 671-677. DOI: 10.11913/PSJ.2095-0837.2020.50671
    [4]Qi Tong-Hui, Gao Meng, Yuan Yang-Yang, Li Ming-Jun, Ma Feng-Wang, Ma Bai-Quan. Cloning, expression analysis, and subcellular position of MdPH1 related to acidity in Malus domestica Borkh[J]. Plant Science Journal, 2019, 37(6): 767-774. DOI: 10.11913/PSJ.2095-0837.2019.60767
    [5]Tang Yi-Xuan, Pi Li-Min, Zhu Yu-Xian. Epigenetic regulation of root stem cells in plants[J]. Plant Science Journal, 2019, 37(5): 682-689. DOI: 10.11913/PSJ.2095-0837.2019.50682
    [6]Nan Di-Na, Xue Min, Tang Kuan-Gang, Ren Mei-Yan, Wang Mao-Yan. Establishment of the cotyledon protoplast transient expression system of Ammopiptanthus mongolicus and subcellular localization of the AmDREB1 protein[J]. Plant Science Journal, 2018, 36(4): 562-568. DOI: 10.11913/PSJ.2095-0837.2018.40562
    [7]Feng Chen, Tang Hao-Ru, Jiang Lei-Yu, Wang Xiao-Rong, Chen Qing, Sun Bo. Advances in studies on carotenoids in Malus pumila[J]. Plant Science Journal, 2017, 35(6): 932-939. DOI: 10.11913/PSJ.2095-0837.2017.60932
    [8]Zhang Yu, Xu Zhi-Chao, Ji Ai-Jia, Song Jing-Yuan. Regulation of secondary metabolite biosynthesis by bZIP transcription factors in plants[J]. Plant Science Journal, 2017, 35(1): 128-137. DOI: 10.11913/PSJ.2095-0837.2017.10128
    [9]YANG Li-Xiang, WANG Zheng-Xun, KE De-Sen, WU Jin-Xiong. Subcellular Localization of Arabidopsis Hemoglobin 3[J]. Plant Science Journal, 2010, 28(4): 516-520.
    [10]CHEN Jin-Feng, ZHUANG Fei-Yun, QIAN Chun-Tao. Synthesis and Preliminary Characterization of A New Species (Amphidiploid) in Cucumis[J]. Plant Science Journal, 2001, 19(5): 357-362.
  • Cited by

    Periodical cited type(9)

    1. 沈冠同,刘亚琦,吉南希,张媛媛,王钦宏. 生物发酵法生产L-色氨酸的研究进展. 生物工程学报. 2024(03): 621-643 .
    2. 郝金倩,王宝驹,佟静,刘明池,武占会,王素娜,刘宁. 外源褪黑素对水培韭菜生长和品质的影响. 园艺学报. 2024(04): 847-858 .
    3. 张凯,杨泽良. 植物褪黑素及其缓解重金属胁迫研究. 智慧农业导刊. 2024(12): 65-68+73 .
    4. 代帆,黄晴晴,王灿,李雨箫,程琴. 外源褪黑素对镉胁迫下小麦幼苗生长的影响. 安徽农学通报. 2024(22): 1-6 .
    5. 宋聪慧,郭水欢,史小强,张寒彬,吴家锴,詹丽娟. 褪黑素调控果蔬采后保鲜研究进展. 食品科学. 2023(03): 228-236 .
    6. 郭明阳,贺曰林,潘凯婷,鲍方艳,应叶青. 基于UPLC-MS/MS的毛竹笋不同生长阶段差异代谢物分析. 食品科学. 2023(20): 283-291 .
    7. 王春林,王风琴. 褪黑素在植物抵御逆境胁迫过程中的作用. 安徽农业科学. 2023(21): 11-13 .
    8. 卢绍浩,刘崇盛,许利平,谢永恒,许高燕,吴兆明,张丽娜,高阳. 外源褪黑素对晾制期间雪茄烟叶膜脂过氧化水平的影响. 中国烟草学报. 2023(06): 82-92 .
    9. 尹永祺,周靖宇,方维明,何旭东. 响应面法优化芥菜芽苗富集褪黑素工艺. 现代食品. 2021(22): 131-133+138 .

    Other cited types(20)

Catalog

    Article views (548) PDF downloads (541) Cited by(29)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return