Advance Search
Li Xue-Li, Geng Tian-Tian, Wang Ying, Qian Ting, Zhang Yu-Jie, Zhao Fan, Sun Kun, Zhang Hui. Mining and analysis of the self-incompatibility S gene in Aconitum pendulum N. Busch based on RNA-seq[J]. Plant Science Journal, 2021, 39(2): 172-182. DOI: 10.11913/PSJ.2095-0837.2021.20172
Citation: Li Xue-Li, Geng Tian-Tian, Wang Ying, Qian Ting, Zhang Yu-Jie, Zhao Fan, Sun Kun, Zhang Hui. Mining and analysis of the self-incompatibility S gene in Aconitum pendulum N. Busch based on RNA-seq[J]. Plant Science Journal, 2021, 39(2): 172-182. DOI: 10.11913/PSJ.2095-0837.2021.20172

Mining and analysis of the self-incompatibility S gene in Aconitum pendulum N. Busch based on RNA-seq

Funds: 

This work was supported by grants from the Open Fund Project of the State Key Laboratory of Chromosome Engineering, Institute of Genetic Development, Chinese Academy of Sciences (PCCE-KF-2019-06) and National Natural Science Foundation of China (31660060, 31060033)

More Information
  • Received Date: September 02, 2020
  • Revised Date: November 10, 2020
  • Available Online: October 31, 2022
  • Published Date: April 27, 2021
  • Two Aconitum pendulum N. Busch cultivars (‘WSYB1’ and ‘WSYY1’) were used as materials for transcriptome sequencing (RNA-seq) using bioinformatics to identify possible style and pollen S genes and analyze their sequence characteristics. Results identified two style S genes (ApSRNase) specifically or highly expressed in the style and two pollen S genes (ApSLF) specifically expressed in pollen. Similar to the sequenced plant Aquilegia coerulea James, this study showed that there was a S-RNase-based self-incompatibility system controlled by S-RNase and SLF in A. pendulum, but no Papaveraceae-type self-incompatibility system controlled by sS and pS.
  • [1]
    Takayama S, Isogai A. Self-Incompatibility in plants[J]. Annu Rev of Plant Biol, 2005, 56(1):467-489.
    [2]
    Lewis D. Incompatibility in plants[J]. J Cell Biochem, 2006, 99(2):373-81.
    [3]
    姜立杰, 曹家树. 芸薹属植物自交不亲和性的分子机制[J]. 植物学通报, 2001, 18(4):411-417.

    Jiang LJ, Cao JS. The molecular mechanism of self-incompatibility in Brassica[J]. Chinese Bulletin of Botany, 2001, 18(4):411-417.
    [4]
    刘素玲, 赵国建, 吴欣, 张百行, 高岭巍, 等. 植物自交不亲和机制研究进展[J]. 中国农业科技导报, 2016, 18(4):31-37.

    Liu SL, Zhao GJ, Wu X, Zhang BH, Gao LW, et al. Research progress on plant self-incompatibility mechanism[J]. Journal of Agricultural Science and Technology, 2016, 18(4):31-37.
    [5]
    Lawrence MJ, Afzal M, Kenrick J. The genetical control of self-incompatibility in Papaver rhoeas[J]. Heredity, 1978, 40(2):239-253.
    [6]
    Igic B, Kohn JR. Evolutionary relationships among self-incompatibility RNases[J]. Proc Natl Acad Sci USA, 2001, 98(23):13167-13171.
    [7]
    张一婧, 薛勇彪. 基于S-核酸酶的自交不亲和性的分子机制[J]. 植物学通报, 2007, 24(3):372-388.

    Zhang YJ, Xue YB. Molecular mechanism of self-incompatibility based on S-RNase[J]. Chinese Bulletin of Botany, 2007(3):372-388.
    [8]
    Xue YB, Carpenter R, Dickinson HG, Coen ES. Origin of allelic diversity in Antirrhinum S locus RNases[J]. Plant Cell, 1996, 8(5):805-814.
    [9]
    Kao T, Tsukamoto T. The molecular and genetic bases of S-RNase-based self-incompatibility[J]. Plant Cell, 2004, 16(s1):S72-S83.
    [10]
    Lai Z, Ma WS, Han B, Liang LZ, Zhang YS, et al. An F-box gene linked to the self-incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum[J]. Plant Mol Biol, 2002, 50(1):29-42.
    [11]
    张辉. 金鱼草自交不亲和S-位点的结构与进化[D]. 北京:中国科学院大学, 2014.
    [12]
    Zhang Y, Zhang H, Zhao F, Song ZD, Guo YZ, et al. A molecular evolutionary framework of self-Incompatibility in the angiosperms[J]. SSRN Electronic Journal, 2020.DOI: 10.2139/ssrn.3596584.
    [13]
    Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nat Biotechnol, 2011, 29(7):644-652.
    [14]
    Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[J]. Genome Biol, 2009, 10(3):R25.
    [15]
    Li B, Dewey CN. RSEM:accurate transcript quantification from RNA-seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12(1):323-323.
    [16]
    Wheeler MJ, de Graaf BHJ, Hadjiosif N, Perry RM, Poulter NS, et al. Identification of the pollen self-incompatibility determinant in Papaver rhoeas[J]. Nature, 2009, 459(7249):992-995.
    [17]
    Foote HC, Ride JP, Franklin-Tong VE, Walker EA, Lawrence MJ, et al. Cloning and expression of a distinctive class of self-incompatibility (S) gene from Papaver rhoeas L.[J]. Proc Natl Acad Sci USA, 1994, 91(6):2265-2269.
    [18]
    Walker EA, Ride JP, Kurup S, Franklin-Tong VE, Lawrence MJ, Franklin FCH. Molecular analysis of two functional homologues of the S3 allele of the Papaver rhoeas self-incompatibility gene isolated from different populations[J]. Plant Mol Biol, 1996, 30(5):983-994.
    [19]
    Kurup S, Ride JP, Jordan N, Fletcher G, Franklin-Tong VE, et al. Identification and cloning of related self-incompatibility S-genes in Papaver rhoeas and Papaver nudicaule[J]. Sex Plant Reprod, 1998, 11(4):192-198.
    [20]
    Paape T, Miyake T, Takebayashi N, Wolf D, Kohn JR, et al. Evolutionary genetics of an S-like polymorphism in Papaveraceae with putative function in self-incompatibility[J]. PLoS One, 2011, 6(8):e23635.
    [21]
    Zhang JH, Madden TL. PowerBLAST:a new network BLAST application for interactive or automated sequence analysis and annotation[J]. Genome Res, 1997, 7(6):649-656.
    [22]
    许克恒, 张云彤, 张莹, 王彬, 王法微, 李海燕. 植物F-box基因家族的研究进展[J]. 生物技术通报, 2018, 34(1):26-32.

    Xu KH, Zhang YT, Zhang Y, Wang B, Wang FW, Li HY. Research advances on the F-box gene family in plants[J]. Biotechnology Bulletin, 2018, 34(1):26-32.
    [23]
    Eddy SR. A probabilistic model of local sequence alignment that simplifies statistical significance estimation[J]. PLoS Comput Biol, 2008, 4(5):e1000069.
    [24]
    Edgar RC. MUSCLE:multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Res, 2004, 32(5):1792-1797.
    [25]
    Kumar S, Stecher G, Tamura K. MEGA7:Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mo Biol Evol, 2016, 33(7):1870-1874.
    [26]
    Stamatakis A. RAxML version 8:a tool for phylogenetic analysis and post-analysis of large phylogenies[J]. Bioinformatics, 2014, 30(9):1312-1313.
    [27]
    陈娜娜, 刘金义, 蔡斌, 王刚, 王敏, 程宗明. 苹果SnRK2基因家族的鉴定和生物信息学分析[J]. 中国农学通报, 2013, 29(13):120-127.

    Chen NN, Liu JY, Cai B, Wang G, Wang M, Cheng ZM. Identification and bioinformatics analysis of theSnRK2 gene family in apple (Malus×domestica Borkh.)[J]. Chinese Agricultural Science Bulletin, 2013(13):120-127.
    [28]
    Meinken J, Asch DK, Neizer-Ashun KA, Chang GH, Cooper JR CR, Xiang JM. FunSecKB2:真菌蛋白亚细胞定位的知识库[J]. 计算分子生物学, 2015, 4(10):1-11.

    Meinken J, Asch DK, Neizer-Ashun KA, Chang GH, Cooper JR CR, Xiang JM. FunSecKB2:a fungal protein subcellular location knowledgebase[J]. Computational Molecular Biology, 2015, 4(10):1-11.
    [29]
    王月志, 戴美松, 蔡丹英, 施泽彬. 基于高通量测序的梨果实常用内参基因表达稳定性分析[J]. 分子植物育种, 2019, 17(3):746-753.

    Wang YZ, Dai MS, Cai DY, Shi ZB. Expression stability analysis of common internal reference genes in pear fruit based on high-throughput sequencing[J]. Molecular Plant Breeding, 2019, 17(3):746-753.
    [30]
    Aguiar B, Vieira J, Cunha AE, Vieira CP. No evidence for Fabaceae Gametophytic self-incompatibility being determined by Rosaceae, Solanaceae, and Plantaginaceae S-RNase lineage genes[J]. BMC Plant Biol, 2015, 15(1):129.
    [31]
    余镇藩, 马鑫鑫, 曾斌, 王建友, 阿布都卡尤木·阿依麦提. 植物配子体自交不亲和SBP1基因研究进展[J]. 分子植物育种, 2019, 17(16):5285-5290.

    Yu ZF, Ma XX, Zeng B, Wang JY, Abdkym·Aymt. Research progress onSBP1 gene of plant gametophytic self-incompatibility[J]. Molecular Plant Breeding, 2019, 17(16):5285-5290.
    [32]
    Kubo KI, Entani T, Takara A, Wang N, Fields AM, et al. Collaborative non-self recognition system in S-RNase-based self-Incompatibility[J]. Science, 2010, 330(6005):796-799.
    [33]
    Goldraij A, Kondo K, Lee CB, Hancock CN, Sivaguru M, et al. Compartmentalization of S-RNase and HT-B degradation in self-incompatible Nicotiana[J]. Nature, 2006, 439(7078):805-810.
    [34]
    李富婷, 唐飞, 高冬丽, 段思凡, 李云海, 等. 配子体型自交不亲和调控机制的研究进展[J]. 云南师范大学学报(自然科学版), 2019, 39(6):65-70.

    Li FT, Tang F, Gao DL, Duan SF, Li YH, et al. Research progress on the regulation mechanism of gametophytic self-incompatibility[J]. Journal of Yunnan Normal University (Natural Science Edition), 2019, 39(6):65-70.
    [35]
    Newbigin E, Paape T, Kohn JR. RNase-based self-Incompatibility:puzzled by pollen S[J]. Plant Cell, 2008, 20(9):2286-2292.
  • Related Articles

    [1]Wang Meng-Di, Yong Xu-Hong, Yin Min, Wang Qi-Zhi. Application of metabonomics in regulation study of plant secondary metabolites[J]. Plant Science Journal, 2023, 41(2): 269-278. DOI: 10.11913/PSJ.2095-0837.22175
    [2]Wei Li, Liu Jian-Li. Overview of research on protein subcellular localization in plants[J]. Plant Science Journal, 2021, 39(1): 93-101. DOI: 10.11913/PSJ.2095-0837.2021.10093
    [3]Liu Yan-Li, Zhou Yuan, Cao Dan, Ma Lin-Long, Gong Zi-Ming, Jin Xiao-Fang. Application analysis of predictors for plant protein subcellular localization based on proteome data of Camellia sinensis (L.) O. Ktze.[J]. Plant Science Journal, 2020, 38(5): 671-677. DOI: 10.11913/PSJ.2095-0837.2020.50671
    [4]Qi Tong-Hui, Gao Meng, Yuan Yang-Yang, Li Ming-Jun, Ma Feng-Wang, Ma Bai-Quan. Cloning, expression analysis, and subcellular position of MdPH1 related to acidity in Malus domestica Borkh[J]. Plant Science Journal, 2019, 37(6): 767-774. DOI: 10.11913/PSJ.2095-0837.2019.60767
    [5]Tang Yi-Xuan, Pi Li-Min, Zhu Yu-Xian. Epigenetic regulation of root stem cells in plants[J]. Plant Science Journal, 2019, 37(5): 682-689. DOI: 10.11913/PSJ.2095-0837.2019.50682
    [6]Nan Di-Na, Xue Min, Tang Kuan-Gang, Ren Mei-Yan, Wang Mao-Yan. Establishment of the cotyledon protoplast transient expression system of Ammopiptanthus mongolicus and subcellular localization of the AmDREB1 protein[J]. Plant Science Journal, 2018, 36(4): 562-568. DOI: 10.11913/PSJ.2095-0837.2018.40562
    [7]Feng Chen, Tang Hao-Ru, Jiang Lei-Yu, Wang Xiao-Rong, Chen Qing, Sun Bo. Advances in studies on carotenoids in Malus pumila[J]. Plant Science Journal, 2017, 35(6): 932-939. DOI: 10.11913/PSJ.2095-0837.2017.60932
    [8]Zhang Yu, Xu Zhi-Chao, Ji Ai-Jia, Song Jing-Yuan. Regulation of secondary metabolite biosynthesis by bZIP transcription factors in plants[J]. Plant Science Journal, 2017, 35(1): 128-137. DOI: 10.11913/PSJ.2095-0837.2017.10128
    [9]YANG Li-Xiang, WANG Zheng-Xun, KE De-Sen, WU Jin-Xiong. Subcellular Localization of Arabidopsis Hemoglobin 3[J]. Plant Science Journal, 2010, 28(4): 516-520.
    [10]CHEN Jin-Feng, ZHUANG Fei-Yun, QIAN Chun-Tao. Synthesis and Preliminary Characterization of A New Species (Amphidiploid) in Cucumis[J]. Plant Science Journal, 2001, 19(5): 357-362.
  • Cited by

    Periodical cited type(9)

    1. 沈冠同,刘亚琦,吉南希,张媛媛,王钦宏. 生物发酵法生产L-色氨酸的研究进展. 生物工程学报. 2024(03): 621-643 .
    2. 郝金倩,王宝驹,佟静,刘明池,武占会,王素娜,刘宁. 外源褪黑素对水培韭菜生长和品质的影响. 园艺学报. 2024(04): 847-858 .
    3. 张凯,杨泽良. 植物褪黑素及其缓解重金属胁迫研究. 智慧农业导刊. 2024(12): 65-68+73 .
    4. 代帆,黄晴晴,王灿,李雨箫,程琴. 外源褪黑素对镉胁迫下小麦幼苗生长的影响. 安徽农学通报. 2024(22): 1-6 .
    5. 宋聪慧,郭水欢,史小强,张寒彬,吴家锴,詹丽娟. 褪黑素调控果蔬采后保鲜研究进展. 食品科学. 2023(03): 228-236 .
    6. 郭明阳,贺曰林,潘凯婷,鲍方艳,应叶青. 基于UPLC-MS/MS的毛竹笋不同生长阶段差异代谢物分析. 食品科学. 2023(20): 283-291 .
    7. 王春林,王风琴. 褪黑素在植物抵御逆境胁迫过程中的作用. 安徽农业科学. 2023(21): 11-13 .
    8. 卢绍浩,刘崇盛,许利平,谢永恒,许高燕,吴兆明,张丽娜,高阳. 外源褪黑素对晾制期间雪茄烟叶膜脂过氧化水平的影响. 中国烟草学报. 2023(06): 82-92 .
    9. 尹永祺,周靖宇,方维明,何旭东. 响应面法优化芥菜芽苗富集褪黑素工艺. 现代食品. 2021(22): 131-133+138 .

    Other cited types(20)

Catalog

    Article views (494) PDF downloads (530) Cited by(29)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return