Advance Search
Yang Si-Jia, Zhao Yu-Qing, Chen Tao, Yuan Ming. Research progress on plant melatonin biosynthesis[J]. Plant Science Journal, 2021, 39(2): 211-220. DOI: 10.11913/PSJ.2095-0837.2021.20211
Citation: Yang Si-Jia, Zhao Yu-Qing, Chen Tao, Yuan Ming. Research progress on plant melatonin biosynthesis[J]. Plant Science Journal, 2021, 39(2): 211-220. DOI: 10.11913/PSJ.2095-0837.2021.20211

Research progress on plant melatonin biosynthesis

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China (31801826).

More Information
  • Received Date: August 18, 2020
  • Revised Date: November 03, 2020
  • Available Online: October 31, 2022
  • Published Date: April 27, 2021
  • Melatonin is a conserved small molecule substance in the process of biological evolution and is involved in the regulation of circadian rhythm in animals. Since the discovery of plant melatonin, scholars have studied its synthesis pathways, physiological functions, and mechanisms of action, and found that it is involved in the regulation of plant growth and development (root and fruit development) and cell redox balance. For the plant melatonin synthesis pathway, researchers have found that melatonin exists in a variety of plants and its synthesis-related genes have been cloned. The subcellular localization of melatonin synthesis-related proteins differs among plants, and thus the synthesis site also differs from plant to plant. This article reviews the current status of research on the plant melatonin synthesis pathways, subcellular localization, and synthesis regulation, with a focus on the regulation of subcellular localization and enzyme kinetics in upstream synthesis. We also discuss prospects for future research.
  • [1]
    Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W. Isolation of melatonin, a pineal factor that lightens melanocytes[J]. J Am Chem Soc, 1958, 80:2587.
    [2]
    Reiter RJ. Pineal melatonin:cell biology of its synthesis and of its physiological interactions[J]. Endocr Rev, 1991, 12(2):151-180.
    [3]
    Tilden AR, Becker MA, Amma LL, Arciniega J, McGaw AK. Melatonin production in an aerobic photosynthetic bacterium:an evolutionarily early association with darkness[J]. J Pineal Res, 1997, 22(2):102-106.
    [4]
    Pevet P. Melatonin:from seasonal to circadian signal[J]. J Neuroendocrinol, 2003, 15(4):422-426.
    [5]
    Stehle JH, Saade A, Rawashdeh O, Ackermann K, Jilg A, et al. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases[J]. J Pineal Res, 2011, 51(1):17-43.
    [6]
    Zang MH, Zhao YC, Gao LC, Zhong FY, Qin ZH, et al. The circadian nuclear receptor ROR alpha negatively regulates cerebral ischemia-reperfusion injury and mediates the neuroprotective effects of melatonin[J]. BBA-Mol Basis Dis, 2020, 1866(11):165890.
    [7]
    Xu W, Cai SY, Zhang Y, Wang Y, Ahammed GJ, et al. Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants[J]. J Pineal Res, 2016, 61(4):457-469.
    [8]
    Chang JJ, Guo YL, Zhang ZX, Wei CH, Zhang Y, et al. CBF-responsive pathway and phytohormones are involved in melatonin-improved photosynthesis and redox homeostasis under aerial cold stress in watermelon[J]. Acta Physiol Plant, 2020, 42(10):159.
    [9]
    El-Bakry HA, Ismail IA, Soliman SS. Immunosenescence-like state is accelerated by constant light exposure and counteracted by melatonin or turmeric administration through DJ-1/Nrf2 and P53/Bax pathways[J]. J Photoch Photobio B, 2018, 186:69-80.
    [10]
    Qi CD, Zhang HJ, Liu Y, Wang XY, Dong DH, et al. CsSNAT positively regulates salt tolerance and growth of cucumber by promoting melatonin biosynthesis[J]. Environ Exp Bot, 2020, 175:104036.
    [11]
    He JL, Zhuang XL, Zhou JT, Sun LY, Wan HX, et al. Exogenous melatonin alleviates cadmium uptake and toxicity in apple rootstocks[J]. Tree Physiol, 2020, 40(6):746-761.
    [12]
    Arnao MB, Hernandez-Ruiz J. Functions of melatonin in plants:a review[J]. J Pineal Res, 2015, 59(2):133-150.
    [13]
    Zhao D, Yu Y, Shen Y, Liu Q, Zhao ZW, et al. Melatonin synthesis and function:evolutionary history in animals and plants[J]. Frontiers, 2019, 10:249-265.
    [14]
    Tan DX, Manchester LC, Liu XY, Rosales-Corral SA, Acuna-Castroviejo D, Reiter RJ. Mitochondria and chloroplasts as the original sites of melatonin synthesis:a hypothesis related to melatonin's primary function and evolution in eukaryotes[J]. J Pineal Res, 2013, 54(2):127-138.
    [15]
    Arnao MB, Hernández-Ruiz J. Melatonin and reactive oxygen and nitrogen species:a model for the plant redox network[J]. Melatonin Res, 2019, 2(3):152-168.
    [16]
    Lee K, Back K. Melatonin-deficient rice plants show a common semidwarf phenotype either dependent or independent of brassinosteroid biosynthesis[J]. J Pineal Res, 2019, 66(2):e12537.
    [17]
    Cai SY, Zhang Y, Xu YP, Qi ZY, Li MQ, et al. HsfA1a upregulates melatonin biosynthesis to confer cadmium tole-rance in tomato plants[J]. J Pineal Res, 2017, 62(2):e12387.
    [18]
    王琳. 珠眉海棠(Malus zumi Mats)中褪黑素合成酶黑暗下的转录调控及其泛素化降解的分子机制[D]. 北京:中国农业大学, 2018.
    [19]
    Jones MPA, Cao J, O'Brien R, Murch SJ, Saxena PK. The mode of action of thidiazuron:auxins, indoleamines, and ion channels in the regeneration of Echinacea purpurea L.[J]. Plant Cell Rep, 2007, 26(9):1481-1490.
    [20]
    Van Tassel DL, O'Neill SD. Putative regulatory molecules in plants:evaluating melatonin[J]. J Pineal Res, 2001, 31(1):1-7.
    [21]
    Facchini PJ, Huber-Allanach KL, Tari LW. Plant aromatic L-amino acid decarboxylases:evolution, biochemistry, regulation, and metabolic engineering applications[J]. Phytochemistry, 2000, 54(2):121-138.
    [22]
    Fitzpatrick PF. Tetrahydropterin-dependent amino acid hydroxylases[J]. Annu Rev Biochem, 1999, 68:355-381.
    [23]
    Lee K, Lee HY, Back K. Rice histone deacetylase 10 and Arabidopsis histone deacetylase 14 genes encode N-acetylserotonin deacetylase, which catalyzes conversion of N-acetylserotonin into serotonin, a reverse reaction for melatonin biosynthesis in plants[J]. J Pineal Res, 2018, 64(2):e12460.
    [24]
    Back K, Tan DX, Reiter RJ. Melatonin biosynthesis in plants:multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts[J]. J Pineal Res, 2016, 61(4):426-437.
    [25]
    Erland LAE, Yasunaga A, Li ITS, Murch SJ, Saxena PK. Direct visualization of location and uptake of applied melatonin and serotonin in living tissues and their redistribution in plants in response to thermal stress[J]. J Pineal Res, 2019, 66(1):e12527.
    [26]
    Lee HY, Lee K, Back K. Knockout of Arabidopsis serotonin N-acetyltransferase-2 reduces melatonin levels and delays flowering[J]. Biomolecules, 2019, 9(11):712.
    [27]
    Verde A, Miguez JM, Gallardo M. Melatonin and related bioactive compounds in commercialized date palm fruits (Phoenix dactylifera L.):correlation with some antioxidant parameters[J]. Eur Food Res Technol, 2019, 245(1):51-59.
    [28]
    Zhao Y, Tan DX, Lei Q, Chen H, Wang L, et al. Melatonin and its potential biological functions in the fruits of sweet cherry[J]. J Pineal Res, 2012, 55(1):79-88.
    [29]
    Xu LL, Yue QY, Bian FE, Zhai H, Yao YX. Melatonin treatment enhances the polyphenol content and antioxidant capacity of red wine[J]. Hortic Plant J, 2018, 4(4):144-150.
    [30]
    Okazaki M, Ezura H. Profiling of melatonin in the model tomato (Solanum lycopersicum L.) cultivar micro-tom[J]. J Pineal Res, 2009, 46(3):338-343.
    [31]
    Vitalini S, Gardana C, Zanzotto A, Simonetti P, Faoro F, et al. The presence of melatonin in grapevine (Vitis vinifera L.) berry tissues[J]. J Pineal Res, 2011, 51(3):331-337.
    [32]
    Wang L, Feng C, Zheng XD, Guo Y, Zhou FF, et al. Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress[J]. J Pineal Res, 2017, 63(3):e12429.
    [33]
    Kang K, Lee K, Park S, Byeon Y, Back K. Molecular cloning of rice serotonin N-acetyltransferase, the penultimate gene in plant melatonin biosynthesis[J]. J Pineal Res, 2013, 55(1):7-13.
    [34]
    Kang K, Kong K, Park S, Natsagdorj U, Kim YS, Back K. Molecular cloning of a plant N-acetylserotonin methyltransferase and its expression characteristics in rice[J]. J Pineal Res, 2011, 50(3):304-309.
    [35]
    Lee HY, Byeon Y, Lee K, Lee HJ, Back K. Cloning of Arabidopsis serotonin N-acetyltransferase and its role with caffeic acid O-methyltransferase in the biosynthesis of melatonin in vitro despite their different subcellular localizations[J]. J Pineal Res, 2014, 57(4):418-426.
    [36]
    Byeon Y, Lee HY, Lee KJ, Park S, Back K. Cellular loca-lization and kinetics of the rice melatonin biosynthetic enzymes SNAT and ASMT[J]. J Pineal Res, 2014, 56(1):107-114.
    [37]
    Byeon Y, Lee HY, Back K. Cloning and characterization of the serotonin N-acetyltransferase-2 gene (SNAT2) in rice (Oryza sativa)[J]. J Pineal Res, 2016, 61(2):198-207.
    [38]
    Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, et al. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development[J]. Nat Genet, 2017, 49(7):1099-1106.
    [39]
    Wang XY, Zhang HJ, Xie Q, Liu Y, Lv HM, et al. SlSNAT interacts with HSP40, a molecular chaperone, to regulate melatonin biosynthesis and promote thermotolerance in tomato[J]. Plant Cell Physiol, 2020, 61(5):909-921.
    [40]
    Park S, Byeon Y, Back K. Functional analyses of three ASMT gene family members in rice plants[J]. J Pineal Res, 2013, 55(4):409-415.
    [41]
    Zuo BX, Zheng XD, He PL, Wang L, Lei Q, et al. Overexpression of MzASMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis thaliana plants[J]. J Pineal Res, 2014, 57(4):408-417.
    [42]
    Zheng XD, Tan DX, Allan AC, Zuo BX, Zhao Y, et al. Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress[J]. Sci Rep, 2017, 7:41236.
    [43]
    Liu DD, Sun XS, Liu L, Shi HD, Chen SY, Zhao DK. Overexpression of the melatonin synthesis-related geneSlCOMT1 improves the resistance of tomato to salt stress[J]. Molecules, 2019, 24(8):1514.
    [44]
    Stevens LH, Blom TJ, Verpoorte R. Subcellular localization of tryptophan decarboxylase, strictosidine synthase and strictosidine glucosidase in suspension cultured cells of Catharanthus roseus and Tabernaemontana divaricata[J]. Plant Cell Rep, 1993, 12(10):573-576.
    [45]
    De Luca V, Cutler AJ. Subcellular localization of enzymes involved in indole alkaloid biosynthesis in Catharanthus roseus[J]. Plant Physiol, 1987, 85(4):1099-1102.
    [46]
    Fujiwara T, Maisonneuve S, Isshiki M, Mizutani M, Chen LT, et al. Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice[J]. J Biol Chem, 2010, 285(15):11308-11313.
    [47]
    Weissbach H, Redfieid BG, Axelrod J. Biosynthesis of melatonin:enzymic conversion of serotonin to N-acetylserotonin[J]. Biochim Biophys Acta, 1960, 43(2):352-353.
    [48]
    Tan DX, Hardeland R, Back K, Manchester LC, Alatorre-Jimenez MA, Reiter RJ. On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine:comparisons across species[J]. J Pineal Res, 2016, 61(1):27-40.
    [49]
    Park S, Byeon Y, Kim YS, Back K. Kinetic analysis of purified recombinant rice N-acetylserotonin methyltransferase and peak melatonin production in etiolated rice shoots[J]. J Pineal Res, 2013, 54(2):139-144.
    [50]
    Lee HY, Back K. Melatonin induction and its role in high light stress tolerance in Arabidopsis thaliana[J]. J Pineal Res, 2018, 65(3):e12504.
    [51]
    Lei Q, Wang L, Tan DX, Zhao Y, Zheng XD, et al. Identification of genes for melatonin synthetic enzymes in ‘Red Fuji’ apple (Malus domestica Borkh. cv. Red) and their expression and melatonin production during fruit development[J]. J Pineal Res, 2013, 55(4):443-451.
    [52]
    Wei YX, Liu GY, Bai YJ, Xia FY, He CZ, Shi HT. Two transcriptional activators of N-acetylserotonin O-methyltransferase 2 and melatonin biosynthesis in cassava[J]. J Exp Bot, 2017, 68(17):4997-5006.
    [53]
    Lee K, Choi GH, Back K. Cadmium-induced melatonin synthesis in rice requires light, hydrogen peroxide, and nitric oxide:key regulatory roles for tryptophan decarboxylase and caffeic acid O-methyltransferase[J]. J Pineal Res, 2017, 63(4):e12441.
    [54]
    Kocturk S, Egrilmez MY, Aktan S, Oktay G, Resmi H, et al. Melatonin attenuates the detrimental effects of UVA irradiation in human dermal fibroblasts by suppressing oxidative damage and MAPK/AP-1 signal pathway in vitro[J]. Photodermatol Photo, 2019, 35(4):221-231.
    [55]
    Facchini PJ, Huber-Allanach K, Tari LW. Plant aromatic L-amino acid decarboxylase:evolution, biochemistry, regulation, and metabolic engineering applications[J]. Phytochemistry, 2000, 54(2):121-138.
    [56]
    Fiore S, Li Q, Leech MJ, Schuster F, Emans N, et al. Targeting tryptophan decarboxylase to selected subcellular compartments of tobacco plants affects enzyme stability and in vivo function and leads to a lesion-mimic phenotype[J]. Plant Physiol, 2002, 129(3):1160-1169.
    [57]
    Kang S, Kang K, Lee K, Back K. Characterization of rice tryptophan decarboxylases and their direct involvement in serotonin biosynthesis in transgenic rice[J]. Planta, 2007, 227(1):263-272.
    [58]
    Byeon Y, Park S, Lee HY, Kim YS, Back K. Elevated production of melatonin in transgenic rice seeds expressing rice tryptophan decarboxylase[J]. J Pineal Res, 2014, 56(3):275-282.
    [59]
    Park S, Lee K, Kim YS, Back K. Tryptamine 5-hydroxylase-deficient Sekiguchi rice induces synthesis of 5-hydroxytryptophan and N-acetyltryptamine but decreases melatonin biosynthesis during senescence process of detached leaves[J]. J Pineal Res, 2012, 52(2):211-216.
    [60]
    Park S, Kang K, Lee SW, Ahn MJ, Bae JM, Back K. Production of serotonin by dual expression of tryptophan decarboxylase and tryptamine 5-hydroxylase in Escherichia coli[J]. Appl Microbiol Biotechnol, 2011, 89(5):1387-1394.
    [61]
    Park S, Byeon Y, Back K. Transcriptional suppression of tryptamine 5-hydroxylase, a terminal serotonin biosynthetic gene, induces melatonin biosynthesis in rice (Oryza sativa L.)[J]. J Pineal Res, 2013, 55(2):131-137.
    [62]
    Byeon Y, Back K. Melatonin synthesis in rice seedlings in vivo is enhanced at high temperatures and under dark conditions due to increased serotonin N-acetyltransferase and N-acetylserotonin methyltransferase activities[J]. J Pineal Res, 2014, 56(2):189-195.
    [63]
    Galzin AM, Eon MT, Esnaud H, Lee CR, Pevet P, Langer SZ. Day-night rhythm of 5-methoxytryptamine biosynthesis in the pineal gland of the golden hamster (Mesocricetus auratus)[J]. J Endocrinol, 1988, 118(3):389-397.
    [64]
    Byeon Y, Lee HJ, Lee HY, Back K. Cloning and functio-nal characterization of the Arabidopsis N-acetylserotonin O-methyltransferase responsible for melatonin synthesis[J]. J Pineal Res, 2016, 60(1):65-73.
    [65]
    Byeon Y, Choi GH, Lee HY, Back K. Melatonin biosynthesis requires N-acetylserotonin methyltransferase activity of caffeic acid O-methyltransferase in rice[J]. J Exp Bot, 2015, 66(21):6917-6925.
    [66]
    Byeon Y, Lee HY, Hwang OJ, Lee HJ, Lee K, Back K. Coordinated regulation of melatonin synthesis and degradation genes in rice leaves in response to cadmium treatment[J]. J Pineal Res, 2015, 58(4):470-478.
    [67]
    Ye T, Hao YH, Yu L, Shi HT, Reiter RJ, Feng YQ. A simple, rapid method for determination of melatonin in plant tissues by UPLC coupled with high resolution orbitrap mass spectrometry[J]. Front Plant Sci, 2017, 8:64.
    [68]
    Byeon Y, Back K. Low melatonin production by suppression of either serotonin N-acetyltransferase or N-acetylserotonin methyltransferase in rice causes seedling growth retardation with yield penalty, abiotic stress susceptibility, and enhanced coleoptile growth under anoxic conditions[J]. J Pineal Res, 2016, 60(3):348-359.
    [69]
    Hernandez IG, Gomez FJV, Cerutti S, Arana MV, Silva MF. Melatonin in Arabidopsis thaliana acts as plant growth regulator at low concentrations and preserves seed viability at high concentrations[J]. Plant Physiol Bioch, 2015, 94:191-196.
    [70]
    Back K. Melatonin metabolism, signaling and possible roles in plants[J]. Plant J, 2020, 105(2):376-391.
  • Related Articles

    [1]Wang Meng-Di, Yong Xu-Hong, Yin Min, Wang Qi-Zhi. Application of metabonomics in regulation study of plant secondary metabolites[J]. Plant Science Journal, 2023, 41(2): 269-278. DOI: 10.11913/PSJ.2095-0837.22175
    [2]Wei Li, Liu Jian-Li. Overview of research on protein subcellular localization in plants[J]. Plant Science Journal, 2021, 39(1): 93-101. DOI: 10.11913/PSJ.2095-0837.2021.10093
    [3]Liu Yan-Li, Zhou Yuan, Cao Dan, Ma Lin-Long, Gong Zi-Ming, Jin Xiao-Fang. Application analysis of predictors for plant protein subcellular localization based on proteome data of Camellia sinensis (L.) O. Ktze.[J]. Plant Science Journal, 2020, 38(5): 671-677. DOI: 10.11913/PSJ.2095-0837.2020.50671
    [4]Qi Tong-Hui, Gao Meng, Yuan Yang-Yang, Li Ming-Jun, Ma Feng-Wang, Ma Bai-Quan. Cloning, expression analysis, and subcellular position of MdPH1 related to acidity in Malus domestica Borkh[J]. Plant Science Journal, 2019, 37(6): 767-774. DOI: 10.11913/PSJ.2095-0837.2019.60767
    [5]Tang Yi-Xuan, Pi Li-Min, Zhu Yu-Xian. Epigenetic regulation of root stem cells in plants[J]. Plant Science Journal, 2019, 37(5): 682-689. DOI: 10.11913/PSJ.2095-0837.2019.50682
    [6]Nan Di-Na, Xue Min, Tang Kuan-Gang, Ren Mei-Yan, Wang Mao-Yan. Establishment of the cotyledon protoplast transient expression system of Ammopiptanthus mongolicus and subcellular localization of the AmDREB1 protein[J]. Plant Science Journal, 2018, 36(4): 562-568. DOI: 10.11913/PSJ.2095-0837.2018.40562
    [7]Feng Chen, Tang Hao-Ru, Jiang Lei-Yu, Wang Xiao-Rong, Chen Qing, Sun Bo. Advances in studies on carotenoids in Malus pumila[J]. Plant Science Journal, 2017, 35(6): 932-939. DOI: 10.11913/PSJ.2095-0837.2017.60932
    [8]Zhang Yu, Xu Zhi-Chao, Ji Ai-Jia, Song Jing-Yuan. Regulation of secondary metabolite biosynthesis by bZIP transcription factors in plants[J]. Plant Science Journal, 2017, 35(1): 128-137. DOI: 10.11913/PSJ.2095-0837.2017.10128
    [9]YANG Li-Xiang, WANG Zheng-Xun, KE De-Sen, WU Jin-Xiong. Subcellular Localization of Arabidopsis Hemoglobin 3[J]. Plant Science Journal, 2010, 28(4): 516-520.
    [10]CHEN Jin-Feng, ZHUANG Fei-Yun, QIAN Chun-Tao. Synthesis and Preliminary Characterization of A New Species (Amphidiploid) in Cucumis[J]. Plant Science Journal, 2001, 19(5): 357-362.
  • Cited by

    Periodical cited type(9)

    1. 沈冠同,刘亚琦,吉南希,张媛媛,王钦宏. 生物发酵法生产L-色氨酸的研究进展. 生物工程学报. 2024(03): 621-643 .
    2. 郝金倩,王宝驹,佟静,刘明池,武占会,王素娜,刘宁. 外源褪黑素对水培韭菜生长和品质的影响. 园艺学报. 2024(04): 847-858 .
    3. 张凯,杨泽良. 植物褪黑素及其缓解重金属胁迫研究. 智慧农业导刊. 2024(12): 65-68+73 .
    4. 代帆,黄晴晴,王灿,李雨箫,程琴. 外源褪黑素对镉胁迫下小麦幼苗生长的影响. 安徽农学通报. 2024(22): 1-6 .
    5. 宋聪慧,郭水欢,史小强,张寒彬,吴家锴,詹丽娟. 褪黑素调控果蔬采后保鲜研究进展. 食品科学. 2023(03): 228-236 .
    6. 郭明阳,贺曰林,潘凯婷,鲍方艳,应叶青. 基于UPLC-MS/MS的毛竹笋不同生长阶段差异代谢物分析. 食品科学. 2023(20): 283-291 .
    7. 王春林,王风琴. 褪黑素在植物抵御逆境胁迫过程中的作用. 安徽农业科学. 2023(21): 11-13 .
    8. 卢绍浩,刘崇盛,许利平,谢永恒,许高燕,吴兆明,张丽娜,高阳. 外源褪黑素对晾制期间雪茄烟叶膜脂过氧化水平的影响. 中国烟草学报. 2023(06): 82-92 .
    9. 尹永祺,周靖宇,方维明,何旭东. 响应面法优化芥菜芽苗富集褪黑素工艺. 现代食品. 2021(22): 131-133+138 .

    Other cited types(20)

Catalog

    Article views (1801) PDF downloads (804) Cited by(29)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return