Advance Search
Chang Jin-Hui, Pan Jian, Jiang Huan-Li, Lin Wen-Hui. AtMES1 positively regulates seed number per silique in Arabidopsis thaliana (L.) Heynh[J]. Plant Science Journal, 2021, 39(5): 506-514. DOI: 10.11913/PSJ.2095-0837.2021.50506
Citation: Chang Jin-Hui, Pan Jian, Jiang Huan-Li, Lin Wen-Hui. AtMES1 positively regulates seed number per silique in Arabidopsis thaliana (L.) Heynh[J]. Plant Science Journal, 2021, 39(5): 506-514. DOI: 10.11913/PSJ.2095-0837.2021.50506

AtMES1 positively regulates seed number per silique in Arabidopsis thaliana (L.) Heynh

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31771591, 32070342) and Agri-X Interdisciplinary Fund of Shanghai Jiao Tong University (Agri-X20200204).

More Information
  • Received Date: March 08, 2021
  • Revised Date: May 13, 2021
  • Available Online: October 31, 2022
  • Published Date: October 27, 2021
  • According to our previous genome-wide association analysis (GWAS) and prediction of gene expression, we identified AtMES1 as a potential gene that may participate in regulating seed number per silique (SNS). We identified the loss-of-function mutants of AtMES1 and analyzed their phenotypes. AtMES1 had significantly reduced SNS and seed density compared with the wild-type control. Transcriptomic analysis revealed that multiple important genes involved in hormone-related ovule initiation and development were down-regulated, suggesting that AtMES1 positively regulated SNS by modulating hormone signals. The ectopic expression of AtMES1 by placenta-specific promoter STK led to shorter siliques but significantly increased seed density, further demonstrating that AtMES1 positively regulated ovule initiation and seed density. In conclusion, our study suggests that AtMES1 is a new positive regulator of Arabidopsis ovule initiation and SNS.
  • [1]
    Tong H, Chu C. Functional specificities of brassinosteroid and potential utilization for crop improvement[J]. Trends Plant Sci, 2018, 23(11):1016-1028.
    [2]
    Jiang WB, Lin WH. Brassinosteroid functions in Arabidopsis seed development[J]. Plant Signal Behav, 2013, 8(10):e25928.
    [3]
    Irish V. The ABC model of floral development[J]. Curr Biol, 2017, 27(17):R887-R890.
    [4]
    Yu SX, Zhou LW, Hu LQ, Jiang YT, Zhang YJ, et al. Asynchrony of ovule primordia initiation in Arabidopsis[J]. Development, 2020, 147(24):196618.
    [5]
    Gómez MD, Fuster-Almunia C, Ocaña-Cuesta J, Alonso JM, Pérez-Amador MA. RGL2 controls flower development, ovule number and fertility in Arabidopsis[J]. Plant Sci, 2019, 281:82-92.
    [6]
    Pereira PA, Boavida LC, Santos MR, Becker JD. AtNOT1 is required for gametophyte development in Arabidopsis[J]. Plant J, 2020, 103(4):1289-1303.
    [7]
    Hackenberg D, Twell D. The evolution and patterning of male gametophyte development[J]. Curr Top Dev Biol, 2019, 131:257-298.
    [8]
    Yuan J, Kessler SA. A genome-wide association study reveals a novel regulator of ovule number and fertility in Arabidopsis thaliana[J]. PLoS Genet, 2019, 15(2):e1007934.
    [9]
    Di Marzo M, Roig-Villanova I, Zanchetti E, Caselli F, Gregis V, et al. MADS-Box and bHLH transcription factors coordinate transmitting tract development in Arabidopsis thaliana[J]. Front Plant Sci, 2020, 11:526.
    [10]
    Bartrina I, Otto E, Strnad M, Werner T, Schmülling T. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana[J]. Plant Cell, 2011, 23(1):69-80.
    [11]
    Bencivenga S, Simonini S, Benková E, Colombo L. The transcription factors BEL1 and SPL are required for cytokinin and auxin signaling during ovule development in Arabidopsis[J]. Plant Cell, 2012, 24(7):2886-2897.
    [12]
    Marsch-Martínez N, de Folter S. Hormonal control of the development of the gynoecium[J]. Curr Opin Plant Biol, 2016, 29:104-114.
    [13]
    Marhavỳ P, Bielach A, Abas L, Abuzeineh A, Duclercq J, et al. Cytokinin modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis[J]. Dev Cell, 2011, 21(4):796-804.
    [14]
    Cucinotta M, Di Marzo M, Guazzotti A, de Folter S, Kater MM, et al. Gynoecium size and ovule number are interconnected traits that impact seed yield[J]. J Exp Bot, 2020, 71(9):2479-2489.
    [15]
    Sita K, Sehgal A, Kumar J, Kumar S, Singh S, et al. Identification of high-temperature tolerant Lentil (Lens culinaris Medik.) genotypes through leaf and pollen traits[J]. Front Plant Sci, 2017, 8:744.
    [16]
    Jiang Y, Lahlali R, Karunakaran C, Warkentin TD, Davis AR, et al. Pollen, ovules, and pollination in pea:success, failure, and resilience in heat[J]. Plant Cell Environ, 2019, 42(1):354-372.
    [17]
    Plackett ARG, Powers SJ, Phillips AL, Wilson ZA, Hedden P, et al. The early inflorescence of Arabidopsis tha-liana demonstrates positional effects in floral organ growth and meristem patterning[J]. Plant Reprod, 2018, 31(2):171-191.
    [18]
    Wang Y, Li Y, Yan X, Ding L, Shen L, et al. Characte-rization of C- and D-Class MADS-box genes in Orchids[J]. Plant Physiol, 2020, 184(3):1469-1481.
    [19]
    Robinson-Beers K, Pruitt RE, Gasser CS. Ovule development in wild-type Arabidopsis and two female-sterile mutants[J]. Plant Cell, 1992, 4(10):1237-1249.
    [20]
    Cucinotta M, Colombo L, Roig-Villanova I. Ovule development, a new model for lateral organ formation[J]. Front Plant Sci, 2014, 5:117.
    [21]
    Ó'Maoiléidigh DS, Graciet E, Wellmer F. Gene networks controlling Arabidopsis thaliana flower development[J]. New Phytol, 2014, 201(1):16-30.
    [22]
    Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, et al. MADS-box protein complexes control carpel and ovule development in Arabidopsis[J]. Plant Cell, 2003, 15(11):2603-2611.
    [23]
    Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, et al. Assessing the redundancy of MADS-box genes during carpel and ovule development[J]. Nature, 2003, 424(6944):85-88.
    [24]
    Huang HY, Jiang WB, Hu YW, Wu P, Zhu JY, et al. BR signal influences Arabidopsisovule and seed number through regulating related genes expression by BZR1[J]. Mol Plant, 2013, 6(2):456-469.
    [25]
    Gonçalves B, Hasson A, Belcram K, Cortizo M, Morin H, et al. A conserved role for CUP-SHAPED COTYLEDON genes during ovule development[J]. Plant J, 2015, 83(4):732-742.
    [26]
    Ceccato L, Masiero S, Sinha Roy D, Bencivenga S, Roig-Villanova I, et al. Maternal control of PIN1 is required for female gametophyte development in Arabidopsis[J]. PLoS One, 2013, 8(6):e66148.
    [27]
    Galbiati F, Sinha Roy D, Simonini S, Cucinotta M, Ceccato L, et al. An integrative model of the control of ovule primordia formation[J]. Plant J, 2013, 76(3):446-455.
    [28]
    Jiang HL, Hong J, Jiang YT, Yu SX, Zhang YJ, et al. Genome-wide association analysis identifies candidate genes regulating seed number per silique in Arabidopsis thaliana[J]. Plants (Basel), 2020, 9(5):585.
    [29]
    Yang Y, Xu R, Ma CJ, Vlot AC, Klessig DF, et al. Inactive methyl indole-3-acetic acid ester can be hydrolyzed and activated by several esterases belonging to the AtMES esterase family of Arabidopsis[J]. Plant Physiol, 2008, 147(3):1034-1045.
    [30]
    Alvarez J, Smyth DR. CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS[J]. Development, 1999, 126(11):2377-2386.
    [31]
    Heisler MG, Atkinson A, Bylstra YH, Walsh R, Smyth DR. SPATULA, a gene that controls development of carpel margin tissues in Arabidopsis, encodes a bHLH protein[J]. Development, 2001, 128(7):1089-1098.
    [32]
    Reyes-Olalde JI, Zúñiga-Mayo VM, Serwatowska J, Chavez Montes RA, Lozano-Sotomayor P, et al. The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium[J]. PLoS Genet, 2017, 13(4):e1006726.
    [33]
    Cucinotta M, Manrique S, Cuesta C, Benkova E, Novak O, et al. CUP-SHAPED COTYLEDON1(CUC1) and CUC2 regulate cytokinin homeostasis to determine ovule number in Arabidopsis[J]. J Exp Bot, 2018, 69(21):5169-5176.
    [34]
    Zhai H, Feng Z, Du X, Song Y, Liu X, et al. A novel allele of TaGW2-A1 is located in a finely mapped QTL that increases grain weight but decreases grain number in wheat (Triticum aestivum L.)[J]. Theor Appl Genet, 2018, 131(3):539-553.
    [35]
    Guan P, Di N, Mu Q, Shen X, Wang Y, et al. Use of near-isogenic lines to precisely map and validate a major QTL for grain weight on chromosome 4AL in bread wheat (Triticum aestivum L.)[J]. Theor Appl Genet, 2019, 132(8):2367-2379.
    [36]
    Zhang YC, Yu Y, Wang CY, Li ZY, Liu Q, et al. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching[J]. Nat Biotechnol, 2013, 31(9):848-852.
    [37]
    Modrusan Z, Reiser L, Feldmann KA, Fischer RL, Haughn GW. Homeotic transformation of ovules into carpel-like structures in Arabidopsis[J]. Plant Cell, 1994, 6(3):333-349.
    [38]
    Arnaud N, Pautot V. Ring the BELL and tie the KNOX:roles for TALEs in gynoecium development[J]. Front Plant Sci, 2014, 5:93.
    [39]
    Zumajo-Cardona C, Pabón-Mora N, Ambrose BA. The evolution of euAPETALA2 genes in vascular plants:from plesiomorphic roles in sporangia to acquired functions in ovules and fruits[J]. Mol Biol Evol, 2021, 38(6):2319-2336.
    [40]
    Schneitz K, Baker SC, Gasser CS, Redweik A. Pattern formation and growth during floral organogenesis:HUELLENLOS and AINTEGUMENTA are required for the formation of the proximal region of the ovule primordium in Arabidopsis thaliana[J]. Development, 1998, 125(14):2555-2563.
    [41]
    Brambilla V, Battaglia R, Colombo M, Masiero S, Bencivenga S, et al. Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis[J]. Plant Cell, 2007, 19(8):2544-2556.
    [42]
    Barro-Trastoy D, Carrera E, Baños J, Palau-Rodríguez J, Ruiz-Rivero O, et al. Regulation of ovule initation by gibberellins and brassinosteroids in tomato and Arabidopsis:two plant species, two molecular mechanisms[J]. Plant J, 2020, 102(5):1026-1041.
    [43]
    Gomez MD, Barro-Trastoy D, Escoms E, Saura-Sánchez M, Sánchez I, et al. Gibberellins negatively modulate ovule number in plants[J]. Development, 2018, 145(13):163865.
  • Related Articles

    [1]Kang Hongwei, Yue Kangjie, Liu Huixin, Wang Jiali, Tian Xuping. Effect of sex and leaf shape on gas exchange parameters and chlorophyll fluorescence characteristics in Sabina chinensis (L.) Ant[J]. Plant Science Journal, 2024, 42(6): 791-799. DOI: 10.11913/PSJ.2095-0837.23391
    [2]MA Qiong-fang, YAN Hong, KONG Wei-yao, CHEN Ling, LI Wei-dong, ZOU Chang-lin, ZHANG Chao-fan. Effects of hydrology and salinity on chlorophyll fluorescence parameters of Scirpus nipponicus Makino[J]. Plant Science Journal, 2021, 39(6): 654-662. DOI: 10.11913/PSJ.2095-0837.2021.60654
    [3]Huang Jie, Chen Zong-Fu, Yin Li-Ying, Li Man-Qing, Wang Ling-Hui, Teng Wei-Chao. Effects of three plant exogenous hormones on the biomass, chlorophyll fluorescence parameters, and photosynthetic characteristics of Tabebuia chrysantha seedlings[J]. Plant Science Journal, 2018, 36(5): 745-754. DOI: 10.11913/PSJ.2095-0837.2018.50745
    [4]LIU Feng, LI Ming, LI Hong-Lin, YIN Li-Yan, LI Wei. A Preliminary Study on NH4+-N Uptake Kinetics of Potamogeton malaianus under Different Nutrient Conditions[J]. Plant Science Journal, 2009, 27(1): 98-101.
    [5]WANG Guo-Li, GUO Zhen-Fei. Effects of Methyl Viologen on Chlorophyll Fluorescence Parametersin Rice Cultivars with Different Cold-sensitivity[J]. Plant Science Journal, 2008, 26(1): 81-86.
    [6]LI Jing, XU Zhi-Fang, YE Wan-Hui. Effects of Different Stress Treatments on Chlorophyll a Fluorescence in Detached Leaves of Castanopsis hystrix[J]. Plant Science Journal, 2006, 24(5): 429-434.
    [7]HE Rui-Feng, DING Yi, YU Jin-Hong, ZU Ming-Sheng. Study on Leaf Ultrastructure of the Thermo-sensitive Chlorophyll Deficient Mutant in Rice[J]. Plant Science Journal, 2001, 19(1): 1-5.
    [8]Mei Xingguo, Mao Yibin, Lu Mingbo. PROGRESS ON KINETIC MODELS OF PLANT CELL SUSPENSION CULTURE[J]. Plant Science Journal, 1999, 17(S1): 83-87.
    [9]Zhang Chunlei, Zhang Rongxian. COMPARATIVE STUDIES ON ENZYMATIC KINETICS PARAMETERS OF RIBULOSE 1,5 BISPHOSPHATE CARBOXYLASE/OXYGENASE IN CHLAMYDOMONAS REINHARDTII[J]. Plant Science Journal, 1999, 17(2): 115-121.
    [10]Chen Yizhu, He Jie, Li Ping, Lin Daoxuan, Zhang Xu. THE INFLUENCE OF CHILLING TEMPERATURE ON THE CHANGES IN CHLOROPHYLL FLUORESCENCE IN VIVO IN RICE FLAG LEAVES[J]. Plant Science Journal, 1989, 7(1): 71-75.
  • Cited by

    Periodical cited type(2)

    1. 黄若晗,王婷,尚光霞,谢三桃,王丽卿,张玮. 合肥市十八联圩湿地夏季浮游植物群落特征及其与环境因子关系的研究. 生态与农村环境学报. 2023(02): 227-235 .
    2. 吴世祥,王晨,胡翠华,刘守江. 元谋干热河谷冲沟坡度与植物优势种关系. 亚热带植物科学. 2018(02): 140-143 .

    Other cited types(4)

Catalog

    Article views (497) PDF downloads (325) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return