Citation: | Yi Ai-Lin, Liu Dong-Mei, Pi Li-Min. Role of intercellular movement of transcription factors in plant growth and development[J]. Plant Science Journal, 2021, 39(5): 552-558. DOI: 10.11913/PSJ.2095-0837.2021.50552 |
[1] |
Lucas WJ, Bouché-Pillon S, Jackson DP, Nguyen L, Baker L, et al. Selective trafficking of KNOTTED 1 ho-meodomain protein and its mRNA through plasmodesmata[J]. Science, 1995, 270(5244):1980-1983.
|
[2] |
Kim JY, Yuan Z, Jackson D. Developmental regulation and significance of KNOX protein trafficking in Arabidopsis[J]. Development, 2003, 130(18):4351-4362.
|
[3] |
Kurata T, Ishida T, Kawabata-Awai C, Noguchi M, Hattori S, et al. Cell-to-cell movement of the CAPRICE protein in Arabidopsis root epidermal cell differentiation[J]. Deve-lopment, 2005, 132(24):5387-5398.
|
[4] |
Sessions A, Yanofsky MF, Weigel D. Cell-cell signaling and movement by the floral transcription factors LEAFY and APETALA1[J]. Science, 2000, 289(5480):779-782.
|
[5] |
Nakajima K, Sena G, Nawy T, Benfey PN. Intercellular movement of the putative transcription factor SHR in root patterning[J]. Nature, 2001, 413(6853):307-311.
|
[6] |
Yadav RK, Perales M, Gruel J, Girke T, Jönsson H, et al. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex[J]. Genes Dev, 2011, 25(19):2025-2030.
|
[7] |
Pi L, Aichinger E, van der Graaff E, Llavata-Peris CI, Weijers D, et al. Organizer-derived WOX5 sgnal maintains root columella stem cells through Chromatin-mediated repression of CDF4 expression[J]. Dev Cell, 2015, 33(5):576-588.
|
[8] |
Lucas WJ, Ham BK, Kim JY. Plasmodesmata-bridging the gap between neighboring plant cells[J]. Trends Cell Biol, 2009, 19:495-503.
|
[9] |
Crawford KM, Zambryski PC. Subcellular localization determines the availability of non-targeted proteins to plasmodesmatal transport[J]. Curr Biol, 2000, 10(17):1032-1040.
|
[10] |
Robards AW. A new interpretation of plasmodesmatal ultrastructure[J]. Planta, 1968, 82(3):200-210.
|
[11] |
Barton DA, Cole L, Collings DA, Liu DY, Smith PM, et al. Cell-to-cell transport via the lumen of the endoplasmic reticulum[J]. Plant J, 2011, 66(5):806-817.
|
[12] |
Roberts AG, Oparka KJ. Plasmodesmata and the control of symplastic transport[J]. Plant Cell Environ, 2010, 26(1):103-124.
|
[13] |
Steeves TA, Sussex IM. Patterns in Plant Development[M]. New York:Cambridge University Press, 1989.
|
[14] |
Clark SE. Organ formation at the vegetative shoot meristem[J]. Plant Cell, 1997, 9(7):1067-1076.
|
[15] |
Satina S, Blakeslee AF. Periclinal chimeras in Datura stramonium in relation to development of leaf and flower[J]. Am J Bot, 1941, 28(10):862-871.
|
[16] |
Kim JY, Rim Y, Wang J, Jackson D. A novel cell-to-cell trafficking assay indicates that the KNOX homeodomain is necessary and sufficient for intercellular protein and mRNA trafficking[J]. Genes Dev, 2005, 19(7):788-793.
|
[17] |
Xu XM, Wang J, Xuan Z, Goldshmidt A, Borrill PG, et al. Chaperonins facilitate KNOTTED1 cell-to-cell trafficking and stem cell function[J]. Science, 2011, 333(6046):1141-1144.
|
[18] |
Mayer KF, Schoof H, Haecker A, Lenhard M, Jürgens G, et al. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem[J]. Cell, 1998, 95(6):805-815.
|
[19] |
Laux T, Mayer KF, Berger J, Jürgens G. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis[J]. Development, 1996, 122(1):87-96.
|
[20] |
Schoof H, Lenhard M, Haecker A, Mayer KF, Jürgens G, et al. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes[J]. Cell, 2000, 100(6):635-644.
|
[21] |
Gallois JL, Nora FR, Mizukami Y, Sablowski R. WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem[J]. Genes Dev, 2004, 18(4):375-380.
|
[22] |
Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity[J]. Science, 2000, 289(5479):617-619.
|
[23] |
Daum G, Medzihradszky A, Suzaki T, Lohmann JU. A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis[J]. Proc Natl Acad Sci USA, 2014, 111(40):14619-14624.
|
[24] |
Rodriguez K, Perales M, Snipes S, Yadav RK, Diaz-Mendoza M, et al. DNA-dependent homodimerization, sub-cellular partitioning, and protein destabilization control WUSCHEL levels and spatial patterning[J]. Proc Natl Acad Sci USA, 2016, 113(41):6307-6315.
|
[25] |
Snipes SA, Rodriguez K, de Vries AE, Miyawaki KN, Perales M, et al. Cytokinin stabilizes WUSCHEL by acting on the protein domains required for nuclear enrichment and transcription[J]. PLoS Genet, 2018, 14(4):e1007351.
|
[26] |
Su YH, Zhou C, Li YJ, Yu Y, Tang LP, et al. Integration of pluripotency pathways regulates stem cell maintenance in the Arabidopsis shoot meristem[J]. Proc Natl Acad Sci USA, 2020, 117(36):22561-22571.
|
[27] |
Van den Berg C, Willemsen V, Hendriks G, Weisbeek P, Scheres B. Short-range control of cell differentiation in the Arabidopsis root meristem[J]. Nature. 1997, 390(6657):287-289.
|
[28] |
Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashi-moto T, et al. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers[J]. Nature, 2007, 446(7137):811-814.
|
[29] |
Cui H, Levesque MP, Vernoux T, Jung JW, Paquette AJ, et al. An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants[J]. Science, 2007, 316(5823):421-425.
|
[30] |
Vatén A, Dettmer J, Wu S, Stierhof YD, Miyashima S, et al. Callose biosynthesis regulates symplastic trafficking during root development[J]. Dev Cell, 2011, 21(6):1144-1155.
|
[31] |
Welch D, Hassan H, Blilou I, Immink R, Heidstra R, et al. Arabidopsis JACKDAW and MAGPIE zinc finger proteins delimit asymmetric cell division and stabilize tissue boundaries by restricting SHORT-ROOT action[J]. Genes Dev, 2007, 21(17):2196-2204.
|
[32] |
Dong W, Zhu Y, Chang H, Wang C, Yang J, et al. An SHR-SCR module specifies legume cortical cell fate to enable nodulation[J]. Nature, 2021, 589(7843):586-590.
|
[33] |
Wu S, Gallagher KL. Intact microtubules are required for the intercellular movement of the SHORT-ROOT transcription factor[J]. Plant J, 2013, 74(1):148-159.
|
[34] |
Koizumi K, Wu S, MacRae-Crerar A, Gallagher KL. An essential protein that interacts with endosomes and promotes movement of the SHORT-ROOT transcription factor[J]. Curr Biol, 2011, 21(18):1559-1564.
|
[35] |
Spiegelman Z, Lee CM, Gallagher KL. KinG is a plant-specific kinesin that regulates both intra- and intercellular movement of SHORT-ROOT[J]. Plant Physiol, 2018, 176(1):392-405.
|
[36] |
Sessions A, Yanofsky MF, Weigel D. Cell-cell signaling and movement by the floral transcription factors LEAFY and APETALA1[J]. Science, 2000, 289(5480):779-782.
|
[37] |
Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM. LEAFY controls floral meristem identity in Arabidopsis[J]. Cell, 1992, 69(5):843-859.
|
[38] |
Wu X, Dinneny JR, Crawford KM, Rhee Y, Citovsky V, et al. Modes of intercellular transcription factor movement in the Arabidopsis apex[J]. Development, 2003, 130(16):3735-3745.
|
[39] |
Winter CM, Austin RS, Blanvillain-Baufumé S, Reback MA, Monniaux M, et al. LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response[J]. Dev Cell, 2011, 20(4):430-443.
|
[40] |
Bowman JL, Smyth DR, Meyerowitz EM. Genes directing flower development in Arabidopsis[J]. Plant Cell, 1989, 1:37-52.
|
[41] |
Lenhard M, Bohnert A, Jürgens G, Laux T. Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS[J]. Cell, 2001, 105(6):805-814.
|
[42] |
Urbanus SL, Martinelli AP, Dinh QD, Aizza LC, Dornelas MC, et al. Intercellular transport of epidermis-expressed MADS domain transcription factors and their effect on plant morphology and floral transition[J]. Plant J, 2010, 63(1):60-72.
|
[43] |
Tröbner W, Ramirez L, Motte P, Hue I, Huijser P, et al. GLOBOSA:a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis[J]. EMBO J, 1992, 11(13):4693-4704.
|
[44] |
Perbal MC, Haughn G, Saedler H, Schwarz-Sommer Z. Non-cell-autonomous function of the Antirrhinum floral homeotic proteins DEFICIENS and GLOBOSA is exerted by their polar cell-to-cell trafficking[J]. Development, 1996, 122(11):3433-3441.
|
[45] |
Salazar-Henao JE, Mokkapati G, Khor EHX, Chou YC, Jane WN, et al. Characterization of root epidermal cell patterning and differentiation in Arabidopsis[J]. Methods Mol Biol, 2018, 1761:85-93.
|
[46] |
Lee MM, Schiefelbein J. Cell pattern in the Arabidopsis root epidermis determined by lateral inhibition with feedback[J]. Plant Cell, 2002, 14(3):611-618.
|
[47] |
Di Cristina M, Sessa G, Dolan L, Linstead P, Baima S, et al. The Arabidopsis Athb-10(GLABRA2) is an HD-Zip protein required for regulation of root hair development[J]. Plant J, 1996, 10(3):393-402.
|
[48] |
Kang YH, Song SK, Schiefelbein J, Lee MM. Nuclear trapping controls the position-dependent localization of CAPRICE in the root epidermis of Arabidopsis[J]. Plant Physiol, 2013, 163(1):193-204.
|
[49] |
Song JH, Kwak SH, Nam KH, Schiefelbein J, Lee MM. QUIRKY regulates root epidermal cell patterning through stabilizing SCRAMBLED to control CAPRICE movement in Arabidopsis[J]. Nat Commun, 2019, 10(1):1744.
|
[1] | Tang Yi-Xuan, Pi Li-Min, Zhu Yu-Xian. Epigenetic regulation of root stem cells in plants[J]. Plant Science Journal, 2019, 37(5): 682-689. DOI: 10.11913/PSJ.2095-0837.2019.50682 |
[2] | HE Yu-Qing, SUN Meng-Xiang. Advances in Single-Cell Technology and Their Application in Plant Research[J]. Plant Science Journal, 2016, 34(3): 475-487. DOI: 10.11913/PSJ.2095-0837.2016.30475 |
[3] | HE Yu-Chi, TANG Xing-Chun, HE Yu-Qing, SUN Meng-Xiang. Roles of Cell Wall in Cell Polarity Establishment and Embryogenesis[J]. Plant Science Journal, 2006, 24(5): 464-468. |
[4] | YANG Ding-Tian, SHI Guo-Xin, CHEN Wei-Min. The Effects of Cr6+'s Pollution on the Ultrastructure of Hydrocharis dubia and Cell Membrane of H.verticillata,Brasenia schreberi,Trapa bispinosa[J]. Plant Science Journal, 2001, 19(6): 483-488. |
[5] | Bi Liejue. A QUESTION ABOUT A BASAL CELL[J]. Plant Science Journal, 1994, 12(2): 185-188. |
[6] | Lu Jingmei, Xie Hang, Fan Shuqin, Zhao Yutang. A NEW KIND OF CRYSTAL IN PLANT CELLS[J]. Plant Science Journal, 1991, 9(3): 206-208. |
[7] | Chen Ni, Xu Xinyang, Hong Shurong, Wu Lilian, Wang Shiyun. THE TRANSFORMATION OF MONOCOT-BAMBUSA CELLS WITH A. TUMEFACIENS[J]. Plant Science Journal, 1991, 9(3): 201-205. |
[8] | Guo Houliang. EFFECT OF MANNITOL ON THE CELLS OF BLUE-GREEN ALGAE[J]. Plant Science Journal, 1990, 8(1): 70-74. |
[9] | Guo Houliang. EFFECT OF PENICILLIN ON THE CELLS OF BLUE-GREEN ALGAE[J]. Plant Science Journal, 1988, 6(3): 307-310. |
[10] | Zhang Zhengquan, Nie Kaiying. DISCOVERY OF ENDOPHYTIC BACTERIA WITHIN CELL OF LILY (LILIUM)[J]. Plant Science Journal, 1986, 4(2): 107-110. |