Advance Search
Aili·Yilinuer, Chen Xiao-Nan, Gao Wen-Li, Wang Hai-Ou, Dawuti·Maigepiretiguli, Ma Xiao-Dong. Physiological responses of arbuscular mycorrhizal fungus- Tamarix ramosissima Ledeb. seedling symbionts to drought stress[J]. Plant Science Journal, 2022, 40(5): 724-732. DOI: 10.11913/PSJ.2095-0837.2022.50724
Citation: Aili·Yilinuer, Chen Xiao-Nan, Gao Wen-Li, Wang Hai-Ou, Dawuti·Maigepiretiguli, Ma Xiao-Dong. Physiological responses of arbuscular mycorrhizal fungus- Tamarix ramosissima Ledeb. seedling symbionts to drought stress[J]. Plant Science Journal, 2022, 40(5): 724-732. DOI: 10.11913/PSJ.2095-0837.2022.50724

Physiological responses of arbuscular mycorrhizal fungus- Tamarix ramosissima Ledeb. seedling symbionts to drought stress

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (42067067) and Natural Science Foundation of Xinjiang Uygur Autonomous Region (2020D01A74).

More Information
  • Received Date: March 30, 2022
  • Revised Date: May 09, 2022
  • Available Online: December 08, 2022
  • Arbuscular mycorrhizal fungi (AMF), as a class of soil microorganisms and green fertilizers, can form mutualistic symbionts with most vascular plants to promote growth under stress. Here, we explored the physiological responses of AMF-Tamarix ramosissima Ledeb. seedling symbionts to drought stress to study drought resistance of Tamarix ramosissima seedlings, a dominant species in the desert riparian forests in the lower reaches of the Tarim River. Two moisture gradients and two inoculation treatments were established. The moisture gradient included normal moisture (soil relative moisture content (70 ±5)%) and drought stress (soil relative moisture content (30 ±5)%) treatments. Inoculation included AMF inoculation treatment and no inoculation control. Results showed that:(1) Compared with the control, plant height, base diameter, and crown width increased in the Tamarix ramosissima seedlings inoculated with AMF by 24.6%, 9.1%, and 32.3%, respectively, under drought stress. (2) Compared with normal moisture treatment, the mycorrhizal infection rate of the Tamarix ramosissima seedlings decreased by 26.47% under drought stress. (3) Compared with the uninoculated plants, malondialdehyde (MDA) content decreased, superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activity increased, and proline and soluble sugar content increased in the Tamarix ramosissima seedlings inoculated with AMF.
  • [1]
    李嘉琪,罗石磊,张帅磊,张文渊,张国斌.辣椒OSCA基因家族的全基因组鉴定及不同胁迫条件下表达分析[J].植物科学学报, 2022, 40(2):187-196.

    Li JQ, Luo SL, Zhang SL, Zhang WY, Zhang GB. Genome-wide identification of pepper OSCA gene family and expression analysis under different stress conditions[J]. Plant Science Journal, 2022, 40(2):187-196.
    [2]
    Jabborova D, Annapurna K, AI-Sadi AM, Alharbi SA, Datta R, et al. Biochar and arbuscular mycorrhizal fungi mediated enhanced drought tolerance in Okra (Abelmoschus esculentus) plant growth, root morphological traits and physiological properties[J]. Saudi Arabia, 2021, 28(10):5490-5499.
    [3]
    Farooq M, Ahmad R, Shahzad M, Sajjad Y, Hassan A, et al. Differential variations in total flavonoid content and antioxidant enzymes activities in pea under different salt and drought stresses[J]. Sci Hortic-Amsterdam, 2021, 287(3):110258.
    [4]
    戴海根,董文科,柴澍杰,马晖玲.模拟干旱胁迫下鹰嘴紫云英幼苗生长及生理特性[J].中国草地学报, 2021, 43(10):63-75.

    Dai HG, Dong WK, Chai SJ, Ma HL. The growth and physiological characteristics of Astragalus cicer L. seedlings under simulated drought stress[J]. Chinese Journal of Grassland, 2021, 43(10):63-75.
    [5]
    喻志,梁坤南,黄桂华,杨光,周再知,等.丛枝菌根真菌对植物抗旱性研究进展[J].草业科学, 2021, 38(4):640-653.

    Yu Z, Liang KN, Huang GH, Yang G, Zhou ZZ, et al. Research progress on the mechanisms of arbuscular mycorrhizal fungi on drought resistance in plants[J]. Pratacultural Science, 2021, 38(4):640-653.
    [6]
    王健,徐艳.丛枝菌根真菌介导的植物耐旱性机理研究综述[J].植物学研究, 2021, 10(2):140-145.

    Wang J, Xu Y. A Review on the mechanism of plant drought tolerance mediated by arbuscular mycorrhizal fungi[J]. Botanical Research, 2021, 10(2):140-145.
    [7]
    张金莲,李铭燕,康贻豪,刘金华,陈廷速,等. 14种AM真菌对枳生长的影响[J].热带作物学报, 2021, 42(11):3278-3283.

    Zhang JL, Li MY, Kang YH, Liu JH, Chen TS, et al. Effect of fourteen arbuscular mycorrhizal fungi on growth of Fructus aurantii[J]. Chinese Journal of Tropical Crops, 2021, 42(11):3278-3283.
    [8]
    张海娟,芦光新,范月君,周华坤,周学丽,等.丛枝菌根真菌对高寒草地6种禾本科牧草生长的影响[J].草地学报, 2022, 30(4):1013-1020.

    Zhang HJ, Lu GX, Fan YJ, Zhou HK, Zhou XL, et al. Effects of arbuscular mycorrhizal fungi on growth of six gramineous forages of alpine meadow[J]. Acta Agrestia Sinica, 2022, 30(4):1013-1020.
    [9]
    Sheteiwy MS, Ali DFI, Xiong YC, Brestic M, Skalicky M, et al. Physiological and biochemical responses of soybean plants inoculated with arbuscular mycorrhizal fungi and bradyrhizobium under drought stress[J]. BMC Plant Biol, 2021,21(1):195.
    [10]
    刘娜,赵泽宇,姜喜铃,邢晓科.菌根真菌提高植物抗旱性机制的研究回顾与展望[J].菌物学报, 2021, 40(4):851-872.

    Liu N, Zhao ZY, Jiang XL, Xing XK. Review and prospect of researches on the mechanisms of mycorrhizal fungi in improving plant drought resistance[J]. Mycosystema, 2021, 40(4):851-872.
    [11]
    吴路遥,张建国,常闻谦,张少磊,常青.三种荒漠植物叶绿素荧光参数日变化特征[J].草业学报, 2021, 30(9):203-213.

    Wu LY, Zhang JG, Chang WQ, Zhang SL, Chang Q. Diurnal change in chlorophyll fluorescence parameters in three desert plants[J]. Acta Prataculturae Sinica, 2021, 30(9):203-213.
    [12]
    冯晓龙,刘冉,李从娟,王玉刚,孔璐,等.梭梭和多枝柽柳的枝干光合及其主要影响因子[J].应用生态学报, 2022, 33(2):344-352.

    Feng XL, Liu R, Li CJ, Wang YG, Kong L, et al. Stem photosynthesis and its main influencing factors of Haloxylon ammodendron and Tamarix ramosissima[J]. Chinese Journal of Applied Ecology, 2022, 33(2):344-352.
    [13]
    高文礼,陈晓楠,伊力努尔·艾力,马晓东.不同水分处理下双接种AMF和根瘤菌对疏叶骆驼刺生长及氮素转移的影响[J].生态学报, 2022, 42(16):1-12.

    Gao WL, Chen XN, Yilinuer·Aili, Ma XD. Effects of double inoculation with AMF and rhizobia under different water treatments on growth and nitrogen transfer of Alhagi sparsifolia[J]. Acta Ecologica Sinica, 2022, 42(16):1-12.
    [14]
    张平,张慧,刘俊娜,环秀菊,王倩朝,等.干旱及复水处理对抗旱性不同小麦品种/系苗期生理生化指标的影响[J].西北农业学报, 2020, 29(12):1795-1802.

    Zhang P, Zhang H, Liu JN, Huan XJ, Wang QC, et al. Effects of drought and re-watering treatment on physiological and biochemical indexes of different drought-resistant wheat varieties/lines at seedling stage[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2020, 29(12):1795-1802.
    [15]
    姜英,刘雄盛,李娟,杨继生,蒋燚,等.干旱胁迫下丛枝菌根真菌对柚木光合及荧光参数的影响[J].森林与环境学报, 2019, 39(6):608-615.

    Jiang Y, Liu XS, Li J, Yang JS, Jiang Y, et al. Effects of arbuscular mycorrhizal fungi on the photosynthetic characteristics and fluorescence parameters of Tectona grandis seedlings under drought stress[J]. Journal of Forest and Environment, 2019, 39(6):608-615.
    [16]
    周生亮,郭良栋.荒漠地区植物丛枝菌根真菌研究进展[J].菌物学报, 2021,40(10):2523-2536.

    Zhou SL, Guo LD. Research progress of arbuscular mycorrhizal fungi associated with plants in desert areas[J]. Mycosystema, 2021, 40(10):2523-2536.
    [17]
    卯吉华,李荣波,景跃波,宁德鲁,李勇鹏,等.核桃园土壤丛枝菌根真菌多样性及接种效应[J].森林与环境学报, 2022, 42(1):71-80.

    Mao JH, Li RB, Jing YB, Ning DL, Li YP, et al. Arbuscular mycorrhizal fungi associated with walnut trees and their effect on seedling growth[J]. Journal of Forest and Environment, 2022, 42(1):71-80.
    [18]
    祁世华,牛燕芬,王睿芳,李菊,李扬苹,等.两种入侵植物与三种本地植物根系特征的比较研究[J].植物科学学报, 2021, 39(2):183-192.

    Qi SH, Niu YF, Wang RF, Li J, Li YP, et al. Comparison of root traits among two invasive and three native species[J]. Plant Science Journal, 2021, 39(2):183-192.
    [19]
    李娇娇.丛枝菌根真菌对干旱胁迫下梨树幼苗生长以及抗旱性的影响[D].重庆:西南大学, 2021:19-27.
    [20]
    李少朋,毕银丽,陈昢圳,陈书琳,张延旭,等.干旱胁迫下AM真菌对矿区土壤改良与玉米生长的影响[J].生态学报, 2013, 33(13):4181-4188.

    Li SP, Bi YL, Chen PZ, Chen SL, Zhang YX, et al. Effects of AMF on soil improvement and maize growth in mining area under drought stress[J]. Acta Ecologica Sinica, 2013, 33(13):4181-4188.
    [21]
    毕银丽,薛子可.丛枝菌根真菌提高植物高温胁迫抗逆性及在矿区生态修复应用展望[J].中国科学基金, 2021, 35(6):933-939.

    Bi YL, Xue ZK. Effects of Arbuscular mycorrhizal fungion resistance of plants to high temperatures stress and application prospect of ecological restoration in mine area[J]. Bulletion of National Natural Science Foundation, 2021, 35(6):933-939.
    [22]
    黄冬.丛枝菌根真菌在调控苹果干旱胁迫中的功能分析[D].杨凌:西北农林科技大学, 2020:22-26.
    [23]
    岑晓斐,贾国晶,曾继娟,朱强,靳磊,等.干旱胁迫下黑果腺肋花楸的生长及生理响应[J].中南林业科技大学学报, 2021, 41(12):36-43.

    Cen XF, Jia GJ, Zeng JJ, Zhu Q, Jin L, et al. Morphology and physiological response of Aronia melanocarpa under drought stress[J].Journal of Central South University of Forestry&Technology, 2021, 41(12):36-43.
    [24]
    Liu CY, Wang YJ, Wu QS, Yang TY, Kucak K. Arbuscular mycorrhizal fungi improve the antioxidant capacity of tea (Camellia sinensis) seedlings under drought stress[J]. Not Bot Horti Agrobo, 2020, 48(4):1993-2005.
    [25]
    马子元,钱志豪,马红彬,伏兵哲,杨卓雄,等.宁夏荒漠草原乡土植物的抗旱性评价[J].中国草地学报, 2022, 44(4):67-75.

    Ma ZY, Qian ZH, Ma HB, Fu BZ, Yang ZX, et al. Evaluation of drought resistance of native plants in Ningxia desert steppe[J].Chinese Journal of Grassland, 2022, 44(4):67-75.
    [26]
    杨耀国,牛冰洁,王永新,卫昭君,郭媛珍,等.干旱胁迫下CO2浓度倍增对达乌里胡枝子幼苗生长及抗氧化特性的影响[J].草地学报, 2022, 30(3):661-669.

    Yang YG, Niu BJ, Wang YX, Wei ZJ, Guo YZ, et al. Effects of doubling CO2 concentration on the growth and antioxidant activity of Lespedeza davurica seedlings under drought stress[J]. Acta Agrestia Sinica, 2022, 30(3):661-669.
    [27]
    臧真凤,白婕,刘丛,昝看卓,龙明秀,等.紫花苜蓿形态和生理指标响应干旱胁迫的品种特异性[J].草业学报, 2021, 30(6):73-81.

    Zang ZF, Bai J, Liu C, Zan KZ, Long MX, et al. Variety specificity of alfalfa morphological and physiological chara-cteristics in response to drought stress[J]. Acta Prata-culturae Sinica, 2021, 30(6):73-81.
    [28]
    曹石超.根瘤菌与丛枝菌根真菌互作对红江橙营养吸收及生理效应的影响[D].重庆:西南大学, 2020:36-42.
    [29]
    王志恒,赵延蓉,黄思麒,王悦娟,起金娥,等.外源海藻糖影响甜高粱幼苗抗旱性的生理生化机制[J].植物生理学报, 2022, 58(4):654-666.

    Wang ZH, Zhao YR, Huang SQ, Wang YJ, Qi JE, et al. Physiological and biochemical mechanism of exogenous trehalose on drought resistance in sweet sorghum seedlings[J]. Plant Physiology Journal, 2022, 58(4):654-666.
    [30]
    张志刚,李斌,史开奇,杨建军,王和平,等.伊犁地区5个引种白蜡对干旱胁迫的响应[J].干旱地区农业研究, 2022, 40(2):9-16.

    Zhang ZG, Li B, Shi KQ, Yang JJ, Wang HP, et al. Response of five introduced Fraxinus chinensis species to drought stress in Yili area[J]. Agricultural Research in the Arid Areas, 2022, 40(2):9-16.
    [31]
    Begum N, Ahanger MA, Su YY, Lei YF, Mustafa NSA, et al. Improved drought tolerance by AMF inoculation in maize (Zea mays) involves physiological and biochemical implications[J]. Plants, 2019, 8(12):579.
  • Related Articles

    [1]Sun Peng-Fei, Shen Ya-Fei, Wang Li-Jun, Chen Tian, Zhang Meng, Xiao Wen-Fa, Cheng Rui-Mei. Effects of nitrogen addition and ectomycorrhizal fungi on growth and photosynthetic characteristics of Pinus massoniana Lamb. seedlings[J]. Plant Science Journal, 2023, 41(1): 112-120. DOI: 10.11913/PSJ.2095-0837.22113
    [2]ZHOU Meng-Li, ZHANG Qing, KANG Xin-Gang, GUO Wei-Wei, JI Lei, LI Cheng-Fu. Study on the Stability of Forest Communities Based on the Spatial Structure Index[J]. Plant Science Journal, 2016, 34(5): 724-733. DOI: 10.11913/PSJ.2095-0837.2016.50724
    [3]ZHU Hua, WANG Hong, LI Bao-Gui, ZHOU Shi-Shun, ZHANG Jian-Hou. Studies on the Forest Vegetation of Xishuangbanna[J]. Plant Science Journal, 2015, 33(5): 641-726. DOI: 10.11913/PSJ-2095-0837.2015.50641
    [4]XU Zhang-Hua, LIU Jian, YU Kun-Yong, GONG Cong-Hong, TANG Meng-Ya, XIE Wan-Jun, LAI Ri-Wen, LI Zeng-Lu. Response of Pinus massoniana Leaf Area Index (LAI) to Climate Indicators in Fujian Province[J]. Plant Science Journal, 2013, 31(2): 114-123. DOI: 10.3724/SP.J.1142.2013.20114
    [5]CHEN Ling, SU Pei-Pei, TONG Han-Wen, LIU Yi-Ke, ZHU Zhan-Wang, YANG Guang-Xiao, GAO Chun-Bao, HE Guang-Yuan. Isolation of the Promoter Region of a Pollen-specific Gene PSG076 by Inverse-PCR[J]. Plant Science Journal, 2012, (3): 309-314. DOI: 10.3724/SP.J.1142.2012.30309
    [6]DOU Xiao-Lin, LI Ming, WANG Wei-Bo, ZHANG Quan-Fa, CHENG Xiao-Li. Changes in Soil Nutrients in Different Eroded Soils in Pinus massoniana Forest Ecosystems in Fujian Province,China[J]. Plant Science Journal, 2012, (2): 161-168. DOI: 10.3724/SP.J.1142.2012.20161
    [7]LI Shu-Jing, LI Deng-Wu, QIN Ting-Song, LIU Yu. Dynamics of Species Composition and Regeneration Rules in the Gaps of Pinus bungeana forest Gaps in Huanglong Mountain,Shaanxi Province[J]. Plant Science Journal, 2010, 28(5): 583-588.
    [8]Xu Jin, Chen Tianhua, Wang Zhangrong. STUDY ON CHROMOSOME FLUORESCENT BANDING PATTERN IN PINUS MASSONIANA[J]. Plant Science Journal, 1998, 16(2): 167-170.
    [9]Tang Wei, Ouyang Fan, Guo Zhongchen. SOMATIC EMBRYOGENESIS FROM PROTOPLASTS OF LOBLOLLY PINE[J]. Plant Science Journal, 1998, 16(2): 106-110.
    [10]He Jixing. COMPARISON OF KARYOTYPES OF TWO MASSONS PINES FROM GUANGXI AND GUIZHOU[J]. Plant Science Journal, 1985, 3(4): 461-462.
  • Cited by

    Periodical cited type(1)

    1. 陈忠海,刘泰龙,陈飞飞,吴玄峰,赵宁,刘星. 青藏高原水毛茛基于转录组测序的SSR和SNP特征分析. 环境生态学. 2021(11): 53-58 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return