Advance Search
Zhang JT,Zhang SS,Zheng LW,Guo DP. Nitrogen modulates plant diseases: recent progress[J]. Plant Science Journal,2024,42(3):404−414. DOI: 10.11913/PSJ.2095-0837.23247
Citation: Zhang JT,Zhang SS,Zheng LW,Guo DP. Nitrogen modulates plant diseases: recent progress[J]. Plant Science Journal,2024,42(3):404−414. DOI: 10.11913/PSJ.2095-0837.23247

Nitrogen modulates plant diseases: recent progress

More Information
  • Received Date: August 24, 2023
  • Accepted Date: October 14, 2023
  • Available Online: June 30, 2024
  • Nitrogen is an important element necessary for plant growth and development. The role of nitrogen in host-pathogen interactions is complex and regulated by multiple factors. In this paper, the relationship between nitrogen and plant disease development is reviewed, and the molecular mechanisms are described from the perspectives of host defense and pathogen infection. The effects of different nitrogen forms on plant disease are also compared.

  • [1]
    The SV,Snyder R,Tegeder M. Targeting nitrogen metabolism and transport processes to improve plant nitrogen use efficiency[J]. Front Plant Sci,2021,11:628366. doi: 10.3389/fpls.2020.628366
    [2]
    Marcianò D,Ricciardi V,Maddalena G,Massafra A,Fassolo EM,et al. Influence of nitrogen on grapevine susceptibility to downy mildew[J]. Plants,2023,12(2):263. doi: 10.3390/plants12020263
    [3]
    Huang HC,Thu TNT,He XH,Gravot A,Bernillon S,et al. Increase of fungal pathogenicity and role of plant glutamine in nitrogen-induced susceptibility (NIS) to rice blast[J]. Front Plant Sci,2017,8:265.
    [4]
    Luo CS,Ma LK,Zhu JH,Guo ZP,Dong K,Dong Y. Effects of nitrogen and intercropping on the occurrence of wheat powdery mildew and stripe rust and the relationship with crop yield[J]. Front Plant Sci,2021,12:637393. doi: 10.3389/fpls.2021.637393
    [5]
    Fleitas MC,Schierenbeck M,Gerard GS,Dietz JI,Golik SI,et al. How leaf rust disease and its control with fungicides affect dough properties,gluten quality and loaf volume under different N rates in wheat[J]. J Cereal Sci,2018,80:119−127. doi: 10.1016/j.jcs.2018.02.003
    [6]
    Abro MA,Lecompte F,Bardin M,Nicot PC. Nitrogen fertilization impacts biocontrol of tomato gray mold[J]. Agron Sustain Dev,2014,34(3):641−648. doi: 10.1007/s13593-013-0168-3
    [7]
    Sandham T,Mahapatra S,Das S. Effect of different levels of nitrogen and potassium against leaf spots disease of groundnut in different fertility gradient soil in field[J]. Legume Res,2018,43(2):283−288.
    [8]
    Song RF,Ahmed W,Tan YJ,Zhao ZX. Different levels of nitrogen fertilizer in nursery stage positively affect the activity of defense-related enzymes and resistance of tobacco plant to Phytophthora nicotianae[J]. Chiang Mai J Sci,2022,49(3):551−564. doi: 10.12982/CMJS.2022.046
    [9]
    Fleitas MC,Schierenbeck M,Gerard GS,Dietz JI,Golik SI,Simón MR. Breadmaking quality and yield response to the green leaf area duration caused by fluxapyroxad under three nitrogen rates in wheat affected with tan spot[J]. Crop Prot,2018,106:201−209. doi: 10.1016/j.cropro.2018.01.004
    [10]
    Mutiga SK,Morales L,Angwenyi S,Wainaina J,Harvey J,et al. Association between agronomic traits and aflatoxin accumulation in diverse maize lines grown under two soil nitrogen levels in eastern Kenya[J]. Field Crops Res,2017,205:124−134. doi: 10.1016/j.fcr.2017.02.007
    [11]
    De Cal A,Melgarejo P,Del Mar Jimenez-Gasco M. Editorial:necrotrophic fungal plant pathogens[J]. Front Plant Sci,2022,13:839674. doi: 10.3389/fpls.2022.839674
    [12]
    Fagard M,Launay A,Clément G,Courtial J,Dellagi A,et al. Nitrogen metabolism meets phytopathology[J]. J Exp Bot,2014,65(19):5643−5656. doi: 10.1093/jxb/eru323
    [13]
    Walters DR,Bingham IJ. Influence of nutrition on disease development caused by fungal pathogens:implications for plant disease control[J]. Ann Appl Biol,2007,151(3):307−324. doi: 10.1111/j.1744-7348.2007.00176.x
    [14]
    Bönnighausen J,Gebhard D,Kröger C,Hadeler B,Tumforde T,et al. Disruption of the GABA shunt affects mitochondrial respiration and virulence in the cereal pathogen Fusarium graminearum[J]. Mol Microbiol,2015,98(6):1115−1132. doi: 10.1111/mmi.13203
    [15]
    Tavernier V,Cadiou S,Pageau K,Laugé R,Reisdorf-Cren M,et al. The plant nitrogen mobilization promoted by Colletotrichum lindemuthianum in Phaseolus leaves depends on fungus pathogenicity[J]. J Exp Bot,2007,58(12):3351−3360. doi: 10.1093/jxb/erm182
    [16]
    Luo ZB,Chen QY,Su YF,Hu SS,Keyhani NO,et al. The AreA nitrogen catabolite repression activator balances fungal nutrient utilization and virulence in the insect fungal pathogen Beauveria bassiana[J]. J Agric Food Chem,2023,71(1):646−659. doi: 10.1021/acs.jafc.2c07047
    [17]
    Horst RJ,Zeh C,Saur A,Sonnewald S,Sonnewald U,Voll LM. The Ustilago maydis Nit2 homolog regulates nitrogen utilization and is required for efficient induction of filamentous growth[J]. Eukaryotic Cell,2012,11(3):368−380. doi: 10.1128/EC.05191-11
    [18]
    Donofrio NM,Oh Y,Lundy R,Pan H,Brown DE,et al. Global gene expression during nitrogen starvation in the rice blast fungus,Magnaporthe grisea[J]. Fungal Genet Biol,2006,43(9):605−617. doi: 10.1016/j.fgb.2006.03.005
    [19]
    Soanes DM,Kershaw MJ,Cooley RN,Talbot NJ. Regulation of the MPG1 hydrophobin gene in the rice blast fungus Magnaporthe grisea[J]. Mol Plant Microbe Interact,2002,15(12):1253−1267. doi: 10.1094/MPMI.2002.15.12.1253
    [20]
    Varlakhanova NV,Tornabene BA,Ford MGJ. Feedback regulation of TORC1 by its downstream effectors Npr1 and Par32[J]. Mol Biol Cell,2018,29(22):2603−2799. doi: 10.1091/mbc.E18-08-0499
    [21]
    Divon HH,Ziv C,Davydov O,Yarden O,Fluhr R. The global nitrogen regulator,FNR1,regulates fungal nutrition-genes and fitness during Fusarium oxysporum pathogenesis[J]. Mol Plant Pathol,2006,7(6):485−497. doi: 10.1111/j.1364-3703.2006.00354.x
    [22]
    Rai R,Tate JJ,Cooper TG. Multiple targets on the Gln3 transcription activator are cumulatively required for control of its cytoplasmic sequestration[J]. G3 Genes| Genomes| Genet,2016,6(5):1391−1408.
    [23]
    Liu YY,Li HX,Li JY,Zhou Y,Zhou ZM,et al. Characterization of the promoter of the nitrate transporter-encoding gene nrtA in Aspergillus nidulans[J]. Mol Genet Genomics,2020,295(5):1269−1279. doi: 10.1007/s00438-020-01700-x
    [24]
    Havenga M,Wingfield BD,Wingfield MJ,Dreyer LL,Roets F,Aylward J. Genetic response to nitrogen starvation in the aggressive Eucalyptus foliar pathogen Teratosphaeria destructans[J]. Curr Genet,2021,67(6):981−990. doi: 10.1007/s00294-021-01208-w
    [25]
    Stephenson SA,Hatfield J,Rusu AG,Maclean DJ,Manners JM. CgDN3:an essential pathogenicity gene of Colletotrichum gloeosporioides necessary to avert a hypersensitive-like response in the host Stylosanthes guianensis[J]. Mol Plant Microbe Interact,2000,13(9):929−941. doi: 10.1094/MPMI.2000.13.9.929
    [26]
    Xiong DG,Wang YL,Tian CM. Transcriptomic profiles of the smoke tree wilt fungus Verticillium dahliae under nutrient starvation stresses[J]. Mol Genet Genomics,2015,290(5):1963−1977. doi: 10.1007/s00438-015-1052-4
    [27]
    Pellier AL,Laugé R,Veneault-Fourrey C,Langin T. CLNR1,the AREA/NIT2-like global nitrogen regulator of the plant fungal pathogen Colletotrichum lindemuthianum is required for the infection cycle[J]. Mol Microbiol,2003,48(3):639−655. doi: 10.1046/j.1365-2958.2003.03451.x
    [28]
    Pérez-García A,Snoeijers SS,Joosten MHAJ,Goosen T,de Wit PJGM. Expression of the avirulence gene Avr9 of the fungal tomato pathogen Cladosporium fulvum is regulated by the global nitrogen response factor NRF1[J]. Mol Plant Microbe Interact,2001,14(3):316−325. doi: 10.1094/MPMI.2001.14.3.316
    [29]
    Thomma BPHJ,Bolton MD,Clergeot PH,de Wit PJGM. Nitrogen controls in planta expression of Cladosporium fulvum Avr9 but no other effector genes[J]. Mol Plant Pathol,2006,7(2):125−130. doi: 10.1111/j.1364-3703.2006.00320.x
    [30]
    Ancona V,Li WT,Zhao YF. Alternative sigma factor RpoN and its modulation protein YhbH are indispensable for Erwinia amylovora virulence[J]. Mol Plant Pathol,2014,15(1):58−66. doi: 10.1111/mpp.12065
    [31]
    Wang YM,Wu JN,Park ZY,Kim SG,Rakwal R,et al. Comparative secretome investigation of Magnaporthe oryzae proteins responsive to nitrogen starvation[J]. J Proteome Res,2011,10(7):3136−3148. doi: 10.1021/pr200202m
    [32]
    Katz ME,Buckland R,Hunter CC,Todd RB. Distinct roles for the p53-like transcription factor XprG and autophagy genes in the response to starvation[J]. Fungal Genet Biol,2015,83:10−18. doi: 10.1016/j.fgb.2015.08.006
    [33]
    Ren WC,Zhang ZH,Shao WY,Yang YL,Zhou MG,Chen CJ. The autophagy-related gene BcATG1 is involved in fungal development and pathogenesis in Botrytis cinerea[J]. Mol Plant Pathol,2017,18(2):238−248. doi: 10.1111/mpp.12396
    [34]
    Sun YM,Wang M,Mur LAJ,Shen QR,Guo SW. Unravelling the roles of nitrogen nutrition in plant disease defences[J]. Int J Mol Sci,2020,21(2):572. doi: 10.3390/ijms21020572
    [35]
    Plavcová L,Hacke UG,Almeida-Rodriguez AM,Li E,Douglas CJ. Gene expression patterns underlying changes in xylem structure and function in response to increased nitrogen availability in hybrid poplar[J]. Plant Cell Environ,2013,36(1):186−199. doi: 10.1111/j.1365-3040.2012.02566.x
    [36]
    Sun Q,Liu XG,Yang J,Liu WW,Du QG,et al. MicroRNA528 affects lodging resistance of maize by regulating lignin biosynthesis under nitrogen-luxury conditions[J]. Mol Plant,2018,11(6):806−814. doi: 10.1016/j.molp.2018.03.013
    [37]
    Li ZY,Jiang H,Jiang XM,Zhang LF,Qin Y. Integrated physiological,transcriptomic,and metabolomic analyses reveal that low-nitrogen conditions improve the accumulation of flavonoids in snow chrysanthemum[J]. Ind Crops Prod,2023,197:116574. doi: 10.1016/j.indcrop.2023.116574
    [38]
    Liao GX,Yang YH,Xiao WM,Mo ZW. Nitrogen modulates grain yield,nitrogen metabolism,and antioxidant response in different rice genotypes[J]. J Plant Growth Regul,2023,42(4):2103−2114. doi: 10.1007/s00344-022-10684-4
    [39]
    Duan YK,Yang HY,Yang H,Wu YQ,Fan SF,et al. Integrative physiological,metabolomic and transcriptomic analysis reveals nitrogen preference and carbon and nitrogen metabolism in blackberry plants[J]. J Plant Physiol,2023,280:153888. doi: 10.1016/j.jplph.2022.153888
    [40]
    Wu D,Wang XW,Xu SQ,Chen CJ,Mao R,Liu XY. Plant phenols contents and their changes with nitrogen availability in peatlands of northeastern China[J]. J Plant Ecol,2020,13(6):713−721. doi: 10.1093/jpe/rtaa061
    [41]
    Lacrampe N,Colombié S,Dumont D,Nicot P,Lecompte F,Lugan R. Nitrogen-mediated metabolic patterns of susceptibility to Botrytis cinerea infection in tomato (Solanum lycopersicum) stems[J]. Planta,2023,257(2):41. doi: 10.1007/s00425-022-04065-0
    [42]
    Zhou JL,Feng ZL,Liu SC,Wei F,Shi Y,et al. CGTase,a novel antimicrobial protein from Bacillus cereus YUPP-10,suppresses Verticillium dahliae and mediates plant defence responses[J]. Mol Plant Pathol,2021,22(1):130−144. doi: 10.1111/mpp.13014
    [43]
    Vega A,Canessa P,Hoppe G,Retamal I,Moyano TC,et al. Transcriptome analysis reveals regulatory networks underlying differential susceptibility to Botrytis cinerea in response to nitrogen availability in Solanum lycopersicum[J]. Front Plant Sci,2015,6:911.
    [44]
    Wang M,Gu ZC,Wang RR,Ding JJ,Ling N,et al. Plant primary metabolism regulated by nitrogen contributes to plant-pathogen interactions[J]. Plant Cell Physiol,2019,60(2):329−342. doi: 10.1093/pcp/pcy211
    [45]
    Isabel González-Hernández A,Fernández-Crespo E,Scalschi L,Hajirezaei MR,von Wirén N,et al. Ammonium mediated changes in carbon and nitrogen metabolisms induce resistance against Pseudomonas syringae in tomato plants[J]. J Plant Physiol,2019,239:28−37. doi: 10.1016/j.jplph.2019.05.009
    [46]
    Liu CX,Alcázar R. A new insight into the contribution of putrescine to defense in Arabidopsis thaliana[J]. Plant Signaling Behav,2021,16(4):1885187. doi: 10.1080/15592324.2021.1885187
    [47]
    Pazarlar S,Sanver U,Cetinkaya N. Exogenous pipecolic acid modulates plant defence responses against Podosphaera xanthii and Pseudomonas syringae pv. lachrymans in cucumber (Cucumis sativus L.)[J]. Plant Biol,2021,23(3):473−484. doi: 10.1111/plb.13243
    [48]
    Barrit T,Porcher A,Cukier C,Satour P,Guillemette T,et al. Nitrogen nutrition modifies the susceptibility of Arabidopsis thaliana to the necrotrophic fungus,Alternaria brassicicola[J]. Physiol Plant,2022,174(1):e13621. doi: 10.1111/ppl.13621
    [49]
    Bloom AJ. Photorespiration and nitrate assimilation:a major intersection between plant carbon and nitrogen[J]. Photosynth Res,2015,123(2):117−128. doi: 10.1007/s11120-014-0056-y
    [50]
    Camañes G,Pastor V,Cerezo M,García-Andrade J,Vicedo B,et al. A deletion in NRT2.1 attenuates Pseudomonas syringae-induced hormonal perturbation,resulting in primed plant defenses[J]. Plant Physiol,2012,158(2):1054−1066. doi: 10.1104/pp.111.184424
    [51]
    Dechorgnat J,Patrit O,Krapp A,Fagard M,Daniel-Vedele F. Characterization of the Nrt2.6 gene in Arabidopsis thaliana:a link with plant response to biotic and abiotic stress[J]. PLoS One,2012,7(8):e42491. doi: 10.1371/journal.pone.0042491
    [52]
    Wu XX,Yuan DP,Chen H,Kumar V,Kang SM,et al. Ammonium transporter 1 increases rice resistance to sheath blight by promoting nitrogen assimilation and ethylene signalling[J]. Plant Biotechnol J,2022,20(6):1085−1097. doi: 10.1111/pbi.13789
    [53]
    Olea F,Pérez-García A,Cantón FR,Rivera ME,Cañas R,et al. Up-regulation and localization of asparagine synthetase in tomato leaves infected by the bacterial pathogen Pseudomonas syringae[J]. Plant Cell Physiol,2004,45(6):770−780. doi: 10.1093/pcp/pch092
    [54]
    Hwang IS,An SH,Hwang BK. Pepper asparagine synthetase 1 (CaAS1) is required for plant nitrogen assimilation and defense responses to microbial pathogens[J]. Plant J,2011,67(5):749−762. doi: 10.1111/j.1365-313X.2011.04622.x
    [55]
    Liu CY,Tian SR,Lv X,Pu YD,Peng HR, et al. Nicotiana benthamiana asparagine synthetase associates with IP-L and confers resistance against tobacco mosaic virus via the asparagine-induced salicylic acid signalling pathway[J]. Mol Plant Pathol,2022,23(1):60−77.
    [56]
    Brauc S,de Vooght E,Claeys M,Höfte M,Angenon G. Influence of over-expression of cytosolic aspartate aminotransferase on amino acid metabolism and defence responses against Botrytis cinerea infection in Arabidopsis thaliana[J]. J Plant Physiol,2011,168(15):1813−1819. doi: 10.1016/j.jplph.2011.05.012
    [57]
    Marroquin-Guzman M,Wilson RA. GATA-dependent glutaminolysis drives appressorium Formation in Magnaporthe oryzae by suppressing TOR inhibition of cAMP/PKA signaling[J]. PLoS Pathog,2015,11(4):e1004851. doi: 10.1371/journal.ppat.1004851
    [58]
    Monteoliva MI,Rizzi YS,Cecchini NM,Hajirezaei MR,Alvarez ME. Context of action of proline dehydrogenase (ProDH) in the hypersensitive response of Arabidopsis[J]. BMC Plant Biol,2014,14(1):21. doi: 10.1186/1471-2229-14-21
    [59]
    Xiong XP,Sun SC,Zhu QH,Zhang XY,Liu F,et al. Transcriptome analysis and RNA interference reveal GhGDH2 regulating cotton resistance to verticillium wilt by JA and SA signaling pathways[J]. Front Plant Sci,2021,12:654676. doi: 10.3389/fpls.2021.654676
    [60]
    Ansari MI,Jalil SU,Ansari SA,Hasanuzzaman M. GABA shunt:a key-player in mitigation of ROS during stress[J]. Plant Growth Regul,2021,94(2):131−149. doi: 10.1007/s10725-021-00710-y
    [61]
    Maekawa S,Sato T,Asada Y,Yasuda S,Yoshida M,et al. The Arabidopsis ubiquitin ligases ATL31 and ATL6 control the defense response as well as the carbon/nitrogen response[J]. Plant Mol Biol,2012,79(3):217−227. doi: 10.1007/s11103-012-9907-0
    [62]
    Zhou JX,Kong WW,Zhao HY,Li R,Yang YJ,Li J. Transcriptome-wide identification of indole glucosinolate dependent flg22-response genes in Arabidopsis[J]. Bioch Biophys Res Commun,2019,520(2):311−319. doi: 10.1016/j.bbrc.2019.09.110
    [63]
    Wang D,Xu H,Huang JY,Kong YZ,AbuQamar S,et al. The Arabidopsis CCCH protein C3H14 contributes to basal defense against Botrytis cinerea mainly through the WRKY33‐dependent pathway[J]. Plant Cell Environ,2020,43(7):1792−1806. doi: 10.1111/pce.13771
    [64]
    Bürger M,Chory J. Stressed out about hormones:how plants orchestrate immunity[J]. Cell Host Microbe,2019,26(2):163−172. doi: 10.1016/j.chom.2019.07.006
    [65]
    Ding ST,Shao XQ,Li JX,Ahammed GJ,Yao YL,et al. Nitrogen forms and metabolism affect plant defence to foliar and root pathogens in tomato[J]. Plant Cell Environ,2021,44(5):1596−1610. doi: 10.1111/pce.14019
    [66]
    Mur LAJ,Prats E,Pierre S,Hall MA,Hebelstrup KH. Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways[J]. Front Plant Sci,2013,4:215.
    [67]
    Liu YJ,Zhang HJ. Reactive oxygen species and nitric oxide as mediators in plant hypersensitive response and stomatal closure[J]. Plant Signaling Behav,2021,16(12):985860.
    [68]
    Lindermayr C,Sell S,Müller B,Leister D,Durner J. Redox regulation of the NPR1-TGA1 system of Arabidopsis thaliana by nitric oxide[J]. Plant Cell,2010,22(8):2894−2907. doi: 10.1105/tpc.109.066464
    [69]
    Wang CX,El-Shetehy M,Shine MB,Yu KS,Navarre D,et al. Free radicals mediate systemic acquired resistance[J]. Cell Rep,2014,7(2):348−355. doi: 10.1016/j.celrep.2014.03.032
    [70]
    Gupta KJ,Brotman Y,Segu S,Zeier T,Zeier J,et al. The form of nitrogen nutrition affects resistance against Pseudomonas syringae pv. phaseolicola in tobacco[J]. J Exp Bot,2013,64(2):553−568. doi: 10.1093/jxb/ers348
    [71]
    Vitor SC,Duarte GT,Saviani EE,Vincentz MGA,Oliveira HC,Salgado I. Nitrate reductase is required for the transcriptional modulation and bactericidal activity of nitric oxide during the defense response of Arabidopsis thaliana against Pseudomonas syringae[J]. Planta,2013,238(3):475−486. doi: 10.1007/s00425-013-1906-0
    [72]
    Mur LAJ,Kumari A,Brotman Y,Zeier J,Mandon J,et al. Nitrite and nitric oxide are important in the adjustment of primary metabolism during the hypersensitive response in tobacco[J]. J Exp Bot,2019,70(17):4571−4582. doi: 10.1093/jxb/erz161
    [73]
    Zhou JY,Wang M,Sun YM,Gu ZC,Wang RR,et al. Nitrate increased cucumber tolerance to Fusarium wilt by regulating fungal toxin production and distribution[J]. Toxins,2017,9(3):100. doi: 10.3390/toxins9030100
    [74]
    Celar F. Competition for ammonium and nitrate forms of nitrogen between some phytopathogenic and antagonistic soil fungi[J]. Biol Control,2003,28(1):19−24. doi: 10.1016/S1049-9644(03)00049-5
    [75]
    Maywald NJ,Mang M,Pahls N,Neumann G,Ludewig U,Francioli D. Ammonium fertilization increases the susceptibility to fungal leaf and root pathogens in winter wheat[J]. Front Plant Sci,2022,13:946584. doi: 10.3389/fpls.2022.946584
  • Related Articles

    [1]Zhu Kai, Fan Yingxuan, Zuo Qihui, Tan Siyu, Liu Fenwu, Zhang Jian, Qin Junmei, Gao Lina. Photosynthetic limitation in soybean in response to soil water-nitrogen interactions and its relationship with leaf water use efficiency[J]. Plant Science Journal, 2024, 42(5): 634-643. DOI: 10.11913/PSJ.2095-0837.24036
    [2]Zong Jiaxin, Su Feng, Cheng Kaili, Yang Chunfeng, Ye Zhongming. Pollen morphology identification within a plant community based on fluorescence and bright-field imaging with an optical microscope: a case study of an alpine meadow from the Hengduan Mountains[J]. Plant Science Journal, 2024, 42(4): 415-422. DOI: 10.11913/PSJ.2095-0837.23318
    [3]Jiang Xue, Deng Chao-Chao, Wang Dang-Jun, Ye Lu-Ping, Zheng Yong, Wang Peng, Zuo Juan. Effects of plant functional groups removal on soil fungal community structure and diversity in an alpine meadow on the Qinghai-Tibet Plateau[J]. Plant Science Journal, 2023, 41(4): 425-436. DOI: 10.11913/PSJ.2095-0837.22246
    [4]Ouyang Lu, Ba Sang, Lha Duo, Liu Xiao-Yan, Liu Gui-Hua, Liu Wen-Zhi, Ding Bang-Jing. Analysis of plant and soil bacterial diversity and their influencing factors in Tibetan Plateau wetlands[J]. Plant Science Journal, 2023, 41(1): 44-52. DOI: 10.11913/PSJ.2095-0837.22112
    [5]Dong Qing-Qing, Zhang Kao-Ping, He Min-Yan, Huang Wei. Plant competition and insect herbivory mediate the impact of invasive plants on soil bacterial community and function[J]. Plant Science Journal, 2022, 40(2): 155-168. DOI: 10.11913/PSJ.2095-0837.2022.20155
    [6]ZHANG Xiao-Jiang, LI Feng-Jiao, WANG Yu-Ying, HAO Wen-Fang. Research on Soil Seed Bank Characteristics of Medicinal Plant Communities in Yangxian, Shaanxi[J]. Plant Science Journal, 2016, 34(5): 734-747. DOI: 10.11913/PSJ.2095-0837.2016.50734
    [7]JIANG Yan-Bin, ZHANG Yang-Jian. Distribution of Plant Functional Groups in the Natural Grasslands of Xizang, China[J]. Plant Science Journal, 2016, 34(2): 220-229. DOI: 10.11913/PSJ.2095-0837.2016.20220
    [8]LIU Jing, HU Nan, DING Sheng-Yan, FAN Yu-Long, ZHAI Yuan-Jie, LIAO Bing-Hua. A Study on Niches of Species Constituting Plant Functional Groups on the South Slope of the Funiu Mountain[J]. Plant Science Journal, 2008, 26(6): 595-599.
    [9]An Shuqing, Wang Zhengfeng, Zhu Xuelei, Hong Bigong, Zhao Rulin. EFFECTS OF SOIL FACTORS ON SPECIES DIVERSITY IN SECONDARY FOREST COMMUNITIES[J]. Plant Science Journal, 1997, 15(2): 143-150.
    [10]Zhang Quanfa, Zheng Zhong, Jin Yixin. THE RELATIONSHIP BETWEEN THE PLANT COMMUNITIES SUCCESSION AND THE SOIL DEVELOPMENT[J]. Plant Science Journal, 1990, 8(4): 325-334.

Catalog

    Article views (159) PDF downloads (34) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return