Advance Search
ZHANG Yong-Fu, HAN Li, HUANG He-Ping, CHEN Ze-Bin, REN Zhen, LIU Jia-Ni, PENG Sheng-Jing. Comparisons of Stem Anatomical Structures among Litchi, Longan and Longli[J]. Plant Science Journal, 2014, 32(6): 551-560. DOI: 10.11913/PSJ.2095-0837.2014.60551
Citation: ZHANG Yong-Fu, HAN Li, HUANG He-Ping, CHEN Ze-Bin, REN Zhen, LIU Jia-Ni, PENG Sheng-Jing. Comparisons of Stem Anatomical Structures among Litchi, Longan and Longli[J]. Plant Science Journal, 2014, 32(6): 551-560. DOI: 10.11913/PSJ.2095-0837.2014.60551

Comparisons of Stem Anatomical Structures among Litchi, Longan and Longli

More Information
  • Received Date: January 12, 2014
  • Available Online: October 31, 2022
  • Published Date: December 29, 2014
  • To observe similarities and differences in stem anatomical structures among litchi, longan and longli, we compared the stem transverse structures and vessel elements of 20 different materials among litchi, longan and longli by free hand section and tissue segregation procedure, respectively. The results showed that (1) The stem structure of the experimental materials from the inside to the outside was periderm, cortex, vascular tissue, pith and ray, but their structure characteristics exhibited great differences. Average pith rate of longan germplasm (26.19%) was significantly greater than that of longli (22.43%) or litchi (6.96%) germplasm, and among them the lowest pith rate was found in Litchi chinensis var. fulvosus (3.37%), followed by ‘Sanyuehong’ (14.14%), and wild longan (30.27%). In addition, the bark rate of litchi (41.93%) was significantly greater than that in longan (33.21%) and longli (29.83%). (2) Vessel density of each tested material was not obviously regular, with ‘Sanyuehong’ (93.17 No./mm2) exhibiting minimum vessel density, followed by longli (101.78 No./mm2); total vessel area/xylem area of litchi was significantly higher than that of longan and longli; the ‘Sanyuehong’ (22.13 μm) ray was significantly wider than that of the other tested materials. (3) Vessel elements mostly belonged to pitted or reticulate vessels, but did include a few ringed, spiral or scalariform vessels in the 20 accessions. Vessel diameter of ‘Sanyuehong’ (35.97 μm) was significantly higher than that of the other tested materials, followed by longli (33.90 μm), with and L. chinensis var. fulvosus (238.52 μm) significantly longer than other specimens. (4) The vessel elements of large aperture, short, end wall of small inclination (or level), no tail, pitted pattern, and simple perforation plate were evolutionary vessel element traits. In litchi germplasm, the vessel elements of ‘Sanyuehong’ were evolutionary, and L. chinensis var. fulvosus was more primitive. (5) Cluster analysis of the stem index structures found that the 20 accessions were firstly divided into two categories. The first category was Litchi germplasm resources, except ‘Sanyuehong’, and the second category included all longan germplasm resources, longli and litchi ‘Sanyuehong’. These two categories were then divided into eight groups, with each group having significant features alone. Comparison of species anatomical stem features showed that litchi was more primitive than longan, and longli was in the middle.
  • [1]
    苏伟强, 黄海滨, 陆玉英, 刘荣光. 龙荔与龙眼荔枝过氧化物酶同工酶分析及亲缘关系研究初报[J]. 广西农业科学, 1993(4): 158-159.
    [2]
    Liu CM, Mei MT. Classification of lychee cultivars with RAPD analysis[J]. Acta Horticulturae, 2005, 665: 149-159.
    [3]
    周佳. 荔枝高密度遗传图谱构建及若干重要种质的分子标记分析[D]. 广州: 华南农业大学, 2009.
    [4]
    Van Buren R, Li JG, Zee F, Zhu JH, Liu CM, Arumuganathan AK, Ming R. Longli is not a hybrid of longan and lychee as revealed by genome size analysis and trichome morphology[J]. Tropical Plant Biol, 2011, 4: 228-236.
    [5]
    喻诚鸿. 次生木质部的进化与植物系统发育的关系[J]. 植物学报, 1954, 3(2): 183-196.
    [6]
    喻诚鸿. 木材解剖在植物分类研究中的意义[J]. 植物学报, 1956, 5(4): 411-425.
    [7]
    吕静, 胡玉熹. 伯乐树茎次生木质部结构的研究[J]. 植物学报, 1994, 36(6): 459-465.
    [8]
    张新英, 高信曾. 十齿花次生木质部和次生韧皮部的解剖学研究[J]. 植物学报, 1995, 37(5): 534-538.
    [9]
    胡正海. 植物比较解剖学在中国50年的进展和展望[J]. 西北植物学报, 2003, 23(2): 244-355.
    [10]
    陈严平, 李信, 张跃华, 杨世清, 何丽莲. 甘蔗属及近缘植物茎的比较解剖研究[J]. 云南大学学报, 1998, 20: 573-576.
    [11]
    李晶, 王布云, 韩丽娟. 中国金缕梅科12属植物次生木质部的比较解剖[J]. 南开大学学报自然科学版, 2003, 36(4): 100-105.
    [12]
    汪琼, 史云云, 姚青菊, 徐增莱, 吕晔, 杭珍. 夏腊梅和美国腊梅及属间杂种'红运’营养器官解剖结构特征比较[J]. 植物资源与环境学报, 2011, 20(3): 62-68.
    [13]
    Roth I. Structural patterents of tropical bark[M]// Roth I ed. Handbuch der Pflanzenanatomie Ⅸ / 3 Bortraegar. Berlin: Stutlgart, 1981: 546-560.
    [14]
    Fahn A. 植物解剖学[M]. 吴树明, 刘德仪, 译. 天津: 南开大学出版社, 1990: 497.
    [15]
    陈树思. 荔枝次生木质部导管分子及穿孔板观察研究[J]. 广西植物, 2007, 27(3): 397-400.
    [16]
    郑瑞, 周方方, 林萍, 姚小华, 陆畅, 张小平. 不同油茶品种叶片横切面解剖特征及其亲缘关系分析[J]. 植物资源与环境学报, 2013, 22(2): 18-29.
    [17]
    赵昱, 刘占林. 5种松树针叶解剖结构的数量分析[J]. 西北林学院学报, 2010, 25(2): 19-24.
    [18]
    蔡联炳, 张同林. 根据叶解剖特征试论赖草属及其相关类群间的亲缘关系[J]. 西北植物学报, 2006, 26(3): 537-543.
    [19]
    刘霞, 彭抒昂, 郭文武. 三种柑橘实生砧木及其两种体细胞杂种根系解剖结构的比较[J]. 园艺学报, 2008, 35(9): 1249-1254.
    [20]
    李晓燕, 王林和, 李连国, 刘艳, 李巧玲, 赵灵芝. 沙棘茎的形态解剖特征与其生态适应性研究[J]. 干旱区资源与环境, 2008, 22(3): 189.
  • Related Articles

    [1]Li Jin-Ye, Ping Jing-Yao, Cui Gui-Feng, Su Ying-Juan, Wang Ting. Effects of the broken rps2 gene cluster on evolutionary rates in Campanulaceae[J]. Plant Science Journal, 2023, 41(3): 333-342. DOI: 10.11913/PSJ.2095-0837.22231
    [2]Wang Jie, Wei Ai-Li, Shi Ying, Li Yan-Hui, Han Yu-Xin, Wang Zhong-Jie. Adaptive evolutionary analysis of hetR gene in Nostoc[J]. Plant Science Journal, 2020, 38(1): 23-31. DOI: 10.11913/PSJ.2095-0837.2020.10023
    [3]Ping Jing-Yao, Zhu Ming, Su Ying-Juan, Wang Ting. Molecular evolution of chloroplast gene rps12 in ferns[J]. Plant Science Journal, 2020, 38(1): 1-9. DOI: 10.11913/PSJ.2095-0837.2020.10001
    [4]Liang Ying-Yi, Pang Xue-Qun, Wang Ting. Mechanism and evolution of fruit type diversity[J]. Plant Science Journal, 2017, 35(6): 912-924. DOI: 10.11913/PSJ.2095-0837.2017.60912
    [5]Wu Xiao-Ping, Sen Lin, Chen Nan, Zhang Xiao, Ma Zhao-Xia, Zhang Qin-Yu. Study on the molecular evolution of the psaA gene from ferns[J]. Plant Science Journal, 2017, 35(2): 177-185. DOI: 10.11913/PSJ.2095-0837.2017.20177
    [6]XU Ke, WANG Bo, SU Ying-Juan, GAO Lei, WANG Ting. Molecular Evolution of psbD Gene in Ferns:Selection Pressure and Co-evolutionary Analysis[J]. Plant Science Journal, 2013, 31(5): 429-438. DOI: 10.3724/SP.J.1142.2013.50429
    [7]ZHOU Yuan, WANG Bo, GAO Lei, WANG Ting. Adaptive Evolution and Coevolution of the rbcL Gene in Xeric Pteridaceae Ferns[J]. Plant Science Journal, 2011, 1(4): 409-416.
    [8]Wang Chongyun, Dang Chenglin. PLANT MATING SYSTEM AND ITS EVOLUTIONARY MECHANISM IN RELATION TO POPULATION ADAPTATION[J]. Plant Science Journal, 1999, 17(2): 163-172.
    [9]Xu Naiyu. THE TAXONOMY,ORIGIN AND EVOLUTION OF WHEAT[J]. Plant Science Journal, 1988, 6(2): 187-194.
    [10]Wang Jinwu, Li Maoxue, Li Lixia. STUDIES ON THE CYTOTAXONOMY OF POLYGONATUM Ⅰ.Karyotypes and evolution of eight species of Polygonatum in China[J]. Plant Science Journal, 1987, 5(1): 1-10.
  • Cited by

    Periodical cited type(7)

    1. 席欧彦,王晨日,古丽奴尔·吐拉西,胡红英. 伊犁河谷野果林传粉昆虫物种多样性及访花行为特征. 新疆农业科学. 2024(01): 190-198 .
    2. 管岳,申文靖,陆彪,王妍欣,阿克居力得孜·努尔改里得,周龙. 塔额盆地野果林不同居群野扁桃土壤种子库及幼苗更新研究. 西北植物学报. 2024(06): 961-967 .
    3. 热依汉古丽·夏迪,杨蕾,如马南木·尼合买提,贾贤德,巫利梅,吕海英. 西天山野果林准噶尔山楂土壤种子库海拔梯度分布格局. 植物科学学报. 2023(02): 172-182 . 本站查看
    4. 李波,赵阳,刘婷,陈学龙,高本强,曹秀文. 洮河上游紫果云杉群落土壤种子库特征及其与地上植被的关系. 西北植物学报. 2022(04): 705-714 .
    5. 冯琳骄,褚佳瑶,孟雨欣,周龙,陆彪. 不同居群天山樱桃土壤种子库与幼苗更新特征. 中南林业科技大学学报. 2022(12): 91-97 .
    6. 尚志福,郑友琪,张济显,位竹君,张北方,张莹. 金花小檗种子总黄酮的优化提取及抗氧化活性. 特产研究. 2021(05): 75-80 .
    7. 陈本学,李雁冰,范少辉,刘广路,申景昕. 海南甘什岭白藤土壤种子库特征及幼苗更新能力. 生态学杂志. 2020(04): 1091-1100 .

    Other cited types(4)

Catalog

    Article views (1882) PDF downloads (4860) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return