Advance Search
JIANG Hua-Bo, WANG Sheng-Feng, YANG Feng, ZHANG Zhong-Hua, QIU Heng-Chi, YI Yin, WANG Hong. Plant Growth, Nitrate Content and Ca Signaling in Wheat (Triticum aestivum L.) Roots under Different Nitrate Supply[J]. Plant Science Journal, 2015, 33(3): 362-368. DOI: 10.11913/PSJ.2095-0837.2015.30362
Citation: JIANG Hua-Bo, WANG Sheng-Feng, YANG Feng, ZHANG Zhong-Hua, QIU Heng-Chi, YI Yin, WANG Hong. Plant Growth, Nitrate Content and Ca Signaling in Wheat (Triticum aestivum L.) Roots under Different Nitrate Supply[J]. Plant Science Journal, 2015, 33(3): 362-368. DOI: 10.11913/PSJ.2095-0837.2015.30362

Plant Growth, Nitrate Content and Ca Signaling in Wheat (Triticum aestivum L.) Roots under Different Nitrate Supply

More Information
  • Received Date: August 29, 2014
  • Available Online: October 31, 2022
  • Published Date: June 27, 2015
  • Nitrate (NO3-) is the main source of inorganic nitrogen for plants in aerobic soil conditions. Nutrient solution experiments were conducted with two winter wheat (Triticum aestivum L.) cultivars, ‘Shimai 15’ and ‘Hengguan 35’, as the tested crops. The objective was to investigate the changes in Ca2+-CaM signaling and root growth of wheat under different concentrations of nitrate supply. Net Ca2+ ion fluxes in different root zones were measured non-invasively using the scanning ion-selective electrode technique. Calmodulin (CaM) content in the roots was determined by enzyme-linked immunosorbent assay. Results showed that shoot fresh weight, nitrate content in shoots, and lateral root numbers of both wheat cultivars were reduced without nitrate supply compared with those under 2.5 mmol/L nitrate treatment. High levels of nitrate (50.0 mmol/L) significantly increased nitrate content in shoots, but reduced the number of lateral roots in ‘Shimai 15’. The CaM content in roots declined under conditions of no nitrate or excess nitrate (50.0 mmol/L), and were more drastically reduced in ‘Hengguan 35’. The roots without nitrate supply showed net Ca2+ ion efflux. However, the roots with 50.0 mmol/L nitrate supply showed net Ca2+ ion influx, the speed of which was significantly slower than that with 2.5 mmol/L nitrate supply. These results suggested that when wheat seedlings were grown under the stress of nitrate deficiency or excess, the influx or efflux of Ca2+ became slower and the content of CaM declined, which might inhibit the root growth of wheat.
  • [1]
    Wang H, Yamauchi A. Growth and Function of Roots under Abiotic Stress in Soils[M]//Huang BR ed. Plant-Environment Interactions.3rd ed. New York: CRC, Taylor and Francis Group, LLC, 2006: 271-320.
    [2]
    Forde BG, Walch-Liu P. Nitrate and glutamate as environmental cues for behavioural responses in plant roots[J]. Plant Cell Environ, 2009, 32(6):682-693.
    [3]
    汪洪, 高翔, 陈磊, 王盛锋, 刘荣乐. 硝态氮供应下植物侧根生长发育的响应机制[J]. 植物营养与肥料学报, 2011, 17(4): 1005-1011.
    [4]
    Gao K, Chen F, Yuan L, Zhang F, Mi G. A comprehensive analysis of root morphological changes and nitrogen allocation in maize in response to low nitrogen stress[J]. Plant Cell Environ, 2015, 38(4):740-50.
    [5]
    Remans T, Nacry P, Pervent M, Filleur S, Diatloff E, Mounier E, Tillard P, Forde BG, Gojon A. The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate rich patches[J]. Proc Natl Acad Sci USA, 2006, 103(50):19206-19211.
    [6]
    Zhang H, Jennings A, Peter WB, Forde BG. Dual pathways for regulation of root branching by nitrate[J]. Proc Natl Acad Sci USA, 1999, 96 (11): 6529-6534.
    [7]
    Hepler PK. Calcium: a central regulator of plant growth and development[J]. Plant Cell, 2005, 17(8): 2142-2155.
    [8]
    张和臣, 尹伟伦, 夏新莉. 非生物逆境胁迫下植物钙信号转导的分子机制[J]. 植物学通报, 2007, 24(1): 114-122.
    [9]
    Bothwell JHF, Ng CKY. The evolution of Ca2+ signalling in photosynthetic eukaryotes[J]. New Phytol, 2005, 166:21-38.
    [10]
    周卫, 汪洪. 植物钙吸收与代谢的生理及分子机制[J]. 植物学通报, 2007, 24(6):789-812.
    [11]
    Yang T, Poovaiah BW. Calcium/calmodulin-mediated signal network in plants[J]. Trends Plant Sci, 2003, 8(10): 505-512.
    [12]
    Dodd AN, Kudla J, Sanders D. The Language of calcium signaling[J]. Annu Rev Plant Biol, 2010, 61: 593-620.
    [13]
    王学奎, 李合生, 刘武定, 伍素辉, 孙晶晶. 钙螯合剂对小麦幼苗氮代谢和干物重的影响[J]. 植物营养与肥料学报, 2000, 6 (1): 42-47.
    [14]
    Bjorkman T, Cleland RE. The role of extracellular free-calcium gradients in gravitropic signaling in maize roots[J]. Planta, 1991, 185(3): 379-384.
    [15]
    Halperin BS, Kochian L, Lynch J. Salinity stress inhibits calcium loading into the xylem of excised barley (Hordeum vulgare) roots[J]. New Phytol, 1997, 135(3): 419-427.
    [16]
    邢树平, 李兴国, 张宪省, 杨玉芳. Ca2+对小麦种根及其根毛生长发育的影响[J]. 植物学通报, 1998, 15(2): 41-45.
    [17]
    江玲, 管晓春. Ca2+-CaM系统在生长素诱导莴苣侧根原基形成中的作用[J]. 南京农业大学学报, 2003, 26(1): 6-9.
    [18]
    谢志霞, 张一, 田晓莉, 李召虎, 何钟佩, 翟志席, 王保民, 段留生. 钙和生长素对棉花幼苗侧根发生的协同调控效应[J]. 棉花学报, 2006, 18(2): 99-103.
    [19]
    马元喜. 小麦的根[M]. 北京:中国农业出版社, 1999: 17-30.
    [20]
    李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社, 2000: 123-124.
    [21]
    Lynch JP. Roots of the second green revolution[J]. Aust J Bot, 2007, 55(5): 493-512.
    [22]
    Gruber BD, Giehl RFH, Friedel S, von Wirén N. Plasticity of the Arabidopsis root system under nutrient deficiencies[J]. Plant Physiol, 2013, 163(1): 161-179.
    [23]
    Zhang H, Rong H, Pilbeam D. Signalling mechanisms underlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana[J]. J Exp Bot, 2007, 58(9): 2329-2338.
    [24]
    Forde BG. Nitrogen signalling pathways shaping root system architecture: an update[J]. Curr Opin Plant Biol, 2014, 21: 30-36.
    [25]
    Scheible WR, Lauerer M, Schulze ED, Caboche M, Stitt M. Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco[J].Plant J, 1997, 11(4): 671-691.
    [26]
    Vincent P, Chua M, Nogue F, Fairbrother A, Mekeel H, Xu Y, Allen N, Bibikova TN, Gilroy S, Bankaitis VA. A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs[J]. J Cell Biol, 2005, 168(5): 801-812.
    [27]
    关军锋, 郑桂珍, 李广敏. 干旱胁迫下CaM与小麦胚芽鞘和幼根生长的关系[J]. 作物学报, 2004, 30(10): 1042-1046.
    [28]
    王学奎, 李合生, 伍素辉, 孙晶晶, 刘武定. CaM拮抗剂对麦苗氮素同化酶及干物重的影响[J]. 武汉植物学研究, 2000, 18(1): 21-25.
  • Related Articles

    [1]LI Xin-Wei, LI Jian-Qiang, WANG Ying-Ming, WANG Heng-Chang, LI Xiao-Dong. Studies on the Floristic Characteristics and Geographical Distribution of the Genus Clematis Linnaeus from Hubei, China[J]. Plant Science Journal, 2004, 22(4): 294-300.
    [2]ZHENG Gui-Ling, LIU Sheng-Xiang, CHEN Gui-Ying, WANG Chang-Li, CHEN Niu. Studies on the Vertical Distribution of Mosses in Mt. Jiugongshan,Hubei,China[J]. Plant Science Journal, 2002, 20(6): 429-432.
    [3]LIU Song-Bai, LI Jian-Qiang, WANG Ying-Ming, WANG Heng-Chang, LI Xiao-Dong. Some New Recorded Plants of Dryopteris Adanson from Hubei[J]. Plant Science Journal, 2002, 20(6): 425-426.
    [4]Zhang Yinhua, Xiong Xiufang, Xu Ying. ANALYSIS OF HUBEI VOLATILE OIL OF GARDENIA FLOWER BY GC/MS[J]. Plant Science Journal, 1999, 17(1): 61-64.
    [5]Li Jianqiang, Zhang xinhua. A REVISION OF FAGACEAE FROM HUBEI[J]. Plant Science Journal, 1998, 16(3): 241-252.
    [6]Wang Shiyun, Xu Huizhu, Zhao Zien, Peng Fusong, Wan Caigan. A STUDY ON THE CONSERVATION OF THE RARE AND THREATENED PLANTS IN HUBEI AND ITS SURROUNDINGS[J]. Plant Science Journal, 1995, 13(4): 354-368.
    [7]Zheng Jiehua. RESEARCH ON THE BASIC ELEMENTS AND MAIN FEATURES OF PTERIDOPHYTES FLORA IN HUBEI PROVINCE[J]. Plant Science Journal, 1987, 5(3): 227-233.
    [8]Zheng Zhong. ON THE PRECIOUS AND RARE PLANTS IN HUBEI[J]. Plant Science Journal, 1986, 4(3): 279-296.
    [9]Wang Yingming. ON THE VEGETATION REGIONALIZATION OF HUBEI PROVINCE[J]. Plant Science Journal, 1985, 3(2): 165-176.
    [10]Lu Debing, Bi Liejue. A PRELIMINARY REPORT OF CHARACEAE FROM HUBEI AND JIANGXI PROVINCES[J]. Plant Science Journal, 1985, 3(2): 147-155.

Catalog

    Article views (1347) PDF downloads (1801) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return