Advance Search
CAO Jian-Guo, CHEN Xue-Fei, XIE Ying-Hua, ZHANG Min, WANG Quan-Xi. Isolation and Expression Profiling of Gene Encoding Chalcone Synthase in Ceratopteris thalictroides[J]. Plant Science Journal, 2015, 33(4): 489-498. DOI: 10.11913/PSJ.2095-0837.2015.40489
Citation: CAO Jian-Guo, CHEN Xue-Fei, XIE Ying-Hua, ZHANG Min, WANG Quan-Xi. Isolation and Expression Profiling of Gene Encoding Chalcone Synthase in Ceratopteris thalictroides[J]. Plant Science Journal, 2015, 33(4): 489-498. DOI: 10.11913/PSJ.2095-0837.2015.40489

Isolation and Expression Profiling of Gene Encoding Chalcone Synthase in Ceratopteris thalictroides

More Information
  • Received Date: March 05, 2015
  • Published Date: August 27, 2015
  • Chalcone synthase (CHS) is a key enzyme in the synthesis of plant flavonoids. However, information on CHS genes in ferns is still unclear. In this study, rapid amplification of cDNA ends (RACE) was used to isolate the full-length sequence of the CHS gene from model fern Ceratopteris thalictroides (CtCHS, GenBank accession number: JX027616.1). Sequence analysis showed that the full length of the CtCHS gene was 1616 bp, with three exons and two introns. Its ORF region was 1215 bp, encoding 404 amino acids. Phylogenetic analysis indicated that CtCHS was clustered with the other ferns, including Equisetum arvense, Psilotum nudum and three leptosporangiate ferns, which reflected the monophyletic feature of the ferns according to Smith's system. Western blot analysis showed that the expression of this gene was significantly affected by ultraviolet (UV) treatment. In this study, the full-length sequence of CtCHS was cloned and the function of the CtCHS protein was studied, thus providing molecular information for further studies on the effect of CtCHS on flavonoids production.
  • [1]
    Markham KR. Distribution of flavonoids in the lower plants and its evolutionary significance[M]// Harborne JB ed. The flavonoids. London: Chapman and Hall, 1988: 427-468.
    [2]
    Bohin MC, Vincken JP, van der Hijden HTWM, Gruppen H. Efficacy of food proteins as carriers for flavonoids[J].J Agric Food Chem, 2012, 60: 4136-4143.
    [3]
    Xiao JB, Chen TT, Cao H, Chen LS, Yang F. Molecular property-affinity relationship of flavanoids and flavonoids for human serum albumin in vitro[J].Mol Nutr Food Res, 2011, 55: 310-317.
    [4]
    Xiao JB, Cao H, Wang YF, Zhao JY, Wei XL. Glycosylation of dietary flavonoids decreases the affinities for plasma protein[J].J Agr Food Chem, 2009, 57: 6642-6648.
    [5]
    Roowi S, Crozier A. Flavonoids in tropical citrus species[J].J Agr Food Chem, 2011, 59: 12217-[JP]12225.
    [6]
    Dao TTH, Linthorst HJM, Verpoorte R. Chalcone synthase and its functions in plant resistance[J].Phytochem Rev, 2011, 10: 397-412.
    [7]
    Sanchez IJF. Polyketide synthase in Cannabis sativa L[D].Leiden, the Netherlands: Leiden University, 2008.
    [8]
    Ferrer JL, Jez JM, Bowman ME, Dixon RA, Noel JP. Structure of chalcone synthase and the mole-cular basis of plant polyketide biosynthesis[J].Nat Struct Biol, 1999, 6: 775-784.
    [9]
    Suh DY, Fukuma K, Kagami J, Yamazaki Y, Shibuya M, Ebizuka Y, Sankawa U. Identification of amino acid residues important in the cyclization reactions of chalcone and stilbene synthases[J].Biochem J, 2000, 350: 229-235.
    [10]
    Jez JM, Noel JP. Mechanism of chalcone synthase pKa of the catalytic cysteine and the role of the conserved histidine in a plant polyketide synthase[J].J Biol Chem, 2000, 275: 39640-39646.
    [11]
    Huang L, Wang H, Ye H, Du Z, Zhang Y, Beerhues L, Liu B. Differential expression of benzophenone synthase and chalcone synthase in Hypericum sampsonii[J].Nat Prod Commun, 2012, 7: 1615-1618.
    [12]
    Liu XJ, Chuang YN, Chiou CY, Chin DC, Shen FQ, Yeh KW. Methylation effect on chalcone synthase gene expression determines anthocyanin pigmentation in floral tissues of two Oncidium orchid cultivars[J].Planta, 2012, 236: 401-409.
    [13]
    Ursula NK, Barzen E, Bemhardardt J, Rohde W, Schwarz-Sommer Z, ReifH J, Wiennand U, Saedler H. Chalcone synthase genes in plants: a tool to study evolutionary relationship[J].J Mol Evol, 1987, 26: 213-225.
    [14]
    Dong X, Braun EL, Grotewold E. Functional conservation of plant secondary metabolic enzymes revealed by complementation of Arabidopsis flavonoid mutants with maize genes[J].Plant Phy-siol, 2001, 127: 46-57.
    [15]
    Lukacin R, Schreiner S, Matern U. Transformation of acridone synthase to chalcone synthase[J].Febs Lett, 2001, 508: 413-417.
    [16]
    Yang J, Huang J, Gu H, Zhong Y, Yang Z. Duplication and adaptive evolution of the chalcone synthase genes of Dendranthema (Asteraceae) [J].Mol Biol Evol, 2002, 19: 1752-1759.
    [17]
    Chatterjee A, Roux SJ. Ceratopteris richardii: a productive model for revealing secrets of signaling and development[J].J Plant Growth Regul, 2000, 19: 284-289.
    [18]
    Muthukumar B, Joyce BL, Elless MP, Stewart CN Jr. Stable transformation of ferns using spores as targets: Pteris vittata and Ceratopteris thalictroides[J].Plant Physiol, 2013, 163: 648-658.
    [19]
    Plackett ARG, Huang L, Sanders HL, Langdale JA. High-efficiency stable transformation of the model fern species Ceratopteris richardii via microparticle bombardment[J].Plant Physiol, 2014, 165: 3-14.
    [20]
    Sommer H, Saedler H. Structure of the chalcone synthase gene of Antirrhinum majus[J].Mol Gen Genet, 1986, 202: 429-434.
    [21]
    Yamazaki Y, Suh DY, Sitthithaworn W, Ishiguro K, Kobayashi Y, Shibuya M, Ebizuka Y, Sankawa U. Diverse chalcone synthase superfamily enzymes from the most primitive vascular plant, Psilotum nudum[J].Planta, 2001, 214: 75-84.
    [22]
    Jiang CG, Schommer CK, Kim SY, Suh DY. Cloning and characterization of chalcone synthase from the moss, Physcomitrella patens[J].Phytochem, 2006, 67: 2531-2540.
    [23]
    Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PG. A classification for extant ferns[J].Taxon, 2006, 55: 705-731.
    [24]
    Stapleton AE. Ultraviolet radiation and plants: Burning questions[J].Plant Cell, 1992, 4: 1353-1358.
    [25]
    Schmelzer E, Jahnen W, Hahlbrock K. In situ localization of light-induced chalcone synthase mRNA, chalcone synthase, and flavonoid end products in epidermal cells of parsley leaves[J].P Natl Acad Sci USA, 1988, 85: 2989-2993.
    [26]
    Kubasek WL, Shirley BW, McKillop A, Goodman HM, Briggs W, Ausubel FM. Regulation of flavonoid biosynthetic genes in germinating Arabidopsis seedlings[J].Plant Cell, 1992, 4: 1229-1236.
    [27]
    Koes RE, Spelt CE, van den Elzen PJ, Mol JN. Cloning and molecular characterization of the chalcone synthase multigene family of Petunia hybrida[J].Gene, 1989, 81: 245-257.
    [28]
    Ryan KG, Swinny EE, Markham KR, Winefield C. Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves[J].Phytochem, 2002, 59: 23-32.
    [29]
    Berli FJ, Moreno D, Piccoli P, Hespanhol-Viana L, Silva MF, Bressan-Smith R, Cavagnaro JB, Bottini R. Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols[J].Plant Cell Environ, 2010, 33: 1-10.
    [30]
    Stracke R, Jahns O, Keck M, Tohge T, Niehaus K, Fernie AR, Weisshaar B. Analysis of production of flavonol glycosides-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation[J].New Phytol, 2010, 188: 985-1000.
    [31]
    Agati G, Biricolti S, Guidi L, Ferrini F, Fini A, Tattini M. The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves[J].J Plant Physiol, 2011, 168: 204-212.
    [32]
    Kusano M, Tohge T, Fukushima A, Kobayashi M, Hayashi N, Otsuki H, Kondou Y, Goto H, Kawashima M, Matsuda F, Niida R, Matsui M, Saito K, Fernie AR. Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light[J].Plant J, 2011, 67: 354-369.
    [33]
    Verdan AM, Wang HC, García CR, Henry WP, Brumaghim JL. Iron binding of 3-hydroxychromone, 5-hydroxychromone, and sulfonated morin: Implications for the antioxidant activity of flavonols with competing metal binding sites[J].J Inorg Biochem, 2011, 105: 1314-1322.
  • Related Articles

    [1]Li Jin-Ye, Ping Jing-Yao, Cui Gui-Feng, Su Ying-Juan, Wang Ting. Effects of the broken rps2 gene cluster on evolutionary rates in Campanulaceae[J]. Plant Science Journal, 2023, 41(3): 333-342. DOI: 10.11913/PSJ.2095-0837.22231
    [2]Wang Jie, Wei Ai-Li, Shi Ying, Li Yan-Hui, Han Yu-Xin, Wang Zhong-Jie. Adaptive evolutionary analysis of hetR gene in Nostoc[J]. Plant Science Journal, 2020, 38(1): 23-31. DOI: 10.11913/PSJ.2095-0837.2020.10023
    [3]Ping Jing-Yao, Zhu Ming, Su Ying-Juan, Wang Ting. Molecular evolution of chloroplast gene rps12 in ferns[J]. Plant Science Journal, 2020, 38(1): 1-9. DOI: 10.11913/PSJ.2095-0837.2020.10001
    [4]Liang Ying-Yi, Pang Xue-Qun, Wang Ting. Mechanism and evolution of fruit type diversity[J]. Plant Science Journal, 2017, 35(6): 912-924. DOI: 10.11913/PSJ.2095-0837.2017.60912
    [5]Wu Xiao-Ping, Sen Lin, Chen Nan, Zhang Xiao, Ma Zhao-Xia, Zhang Qin-Yu. Study on the molecular evolution of the psaA gene from ferns[J]. Plant Science Journal, 2017, 35(2): 177-185. DOI: 10.11913/PSJ.2095-0837.2017.20177
    [6]XU Ke, WANG Bo, SU Ying-Juan, GAO Lei, WANG Ting. Molecular Evolution of psbD Gene in Ferns:Selection Pressure and Co-evolutionary Analysis[J]. Plant Science Journal, 2013, 31(5): 429-438. DOI: 10.3724/SP.J.1142.2013.50429
    [7]ZHOU Yuan, WANG Bo, GAO Lei, WANG Ting. Adaptive Evolution and Coevolution of the rbcL Gene in Xeric Pteridaceae Ferns[J]. Plant Science Journal, 2011, 1(4): 409-416.
    [8]Wang Chongyun, Dang Chenglin. PLANT MATING SYSTEM AND ITS EVOLUTIONARY MECHANISM IN RELATION TO POPULATION ADAPTATION[J]. Plant Science Journal, 1999, 17(2): 163-172.
    [9]Xu Naiyu. THE TAXONOMY,ORIGIN AND EVOLUTION OF WHEAT[J]. Plant Science Journal, 1988, 6(2): 187-194.
    [10]Wang Jinwu, Li Maoxue, Li Lixia. STUDIES ON THE CYTOTAXONOMY OF POLYGONATUM Ⅰ.Karyotypes and evolution of eight species of Polygonatum in China[J]. Plant Science Journal, 1987, 5(1): 1-10.
  • Cited by

    Periodical cited type(7)

    1. 席欧彦,王晨日,古丽奴尔·吐拉西,胡红英. 伊犁河谷野果林传粉昆虫物种多样性及访花行为特征. 新疆农业科学. 2024(01): 190-198 .
    2. 管岳,申文靖,陆彪,王妍欣,阿克居力得孜·努尔改里得,周龙. 塔额盆地野果林不同居群野扁桃土壤种子库及幼苗更新研究. 西北植物学报. 2024(06): 961-967 .
    3. 热依汉古丽·夏迪,杨蕾,如马南木·尼合买提,贾贤德,巫利梅,吕海英. 西天山野果林准噶尔山楂土壤种子库海拔梯度分布格局. 植物科学学报. 2023(02): 172-182 . 本站查看
    4. 李波,赵阳,刘婷,陈学龙,高本强,曹秀文. 洮河上游紫果云杉群落土壤种子库特征及其与地上植被的关系. 西北植物学报. 2022(04): 705-714 .
    5. 冯琳骄,褚佳瑶,孟雨欣,周龙,陆彪. 不同居群天山樱桃土壤种子库与幼苗更新特征. 中南林业科技大学学报. 2022(12): 91-97 .
    6. 尚志福,郑友琪,张济显,位竹君,张北方,张莹. 金花小檗种子总黄酮的优化提取及抗氧化活性. 特产研究. 2021(05): 75-80 .
    7. 陈本学,李雁冰,范少辉,刘广路,申景昕. 海南甘什岭白藤土壤种子库特征及幼苗更新能力. 生态学杂志. 2020(04): 1091-1100 .

    Other cited types(4)

Catalog

    Article views (1091) PDF downloads (1587) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return