Advance Search
Li Bu-Fan, Jiang Yu-Tong, Zhang-Yu, Zhang Yan-Jie, Lin Wen-Hui. Brassinosteroid response of Brassica napus and functional characterization of BnBZL2[J]. Plant Science Journal, 2018, 36(6): 824-834. DOI: 10.11913/PSJ.2095-0837.2018.60824
Citation: Li Bu-Fan, Jiang Yu-Tong, Zhang-Yu, Zhang Yan-Jie, Lin Wen-Hui. Brassinosteroid response of Brassica napus and functional characterization of BnBZL2[J]. Plant Science Journal, 2018, 36(6): 824-834. DOI: 10.11913/PSJ.2095-0837.2018.60824

Brassinosteroid response of Brassica napus and functional characterization of BnBZL2

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31771591,31761163003), Opening Research Projects of National Key Laboratory of Plant Molecular Genetics, CAS, and SMC-Funding (Plan A) of Shanghai Jiao Tong University.

More Information
  • Received Date: April 16, 2018
  • Available Online: October 31, 2022
  • Published Date: December 27, 2018
  • Brassinosteroids (BR) are important phytohormones that regulate plant growth, development, and seed yield. Brassica napus L. is one of the main eatable oil crops in China. Studying BR signaling and regulation of B. napus growth and development can provide clues to increase yield. We compared BR-related genes in B. napus and A. thaliana and analyzed their expression levels in different tissues (using ‘Huyou15’ as material). Results indicated that the key genes involved in BR synthesis and signal transduction pathways were highly expressed in the flower and young seed; seedling root growth was promoted under BR treatment at low concentration but was inhibited at high concentration; and hypocotyl elongation was inhibited under brassinozole (BRZ, a BR biosynthesis inhibitor) treatment in darkness. Furthermore, BR treatment reduced the expression levels of BR synthesis genes, whereas BRZ treatment increased their expression levels, suggesting that BR signaling feedback inhibited the expression of BR biosynthesis genes. Transient expression experiments in tobacco demonstrated that BnBZL2 (BZR1-like gene in B. napus) was localized in the cytoplasm and nucleus, and BR treatment increased the nuclear localization of BnBZL2. Western blotting revealed that BR treatment increased the ratio of dephosphorylated and phosphorylated BnBZL2. The vector of BnBZL2 with point mutations (BnBZL2*, mimicking A. thaliana gain-of-function mutant bzr1-1D) was transformed into A. thaliana and the transgenic plants showed insensitivity to BRZ treatment in darkness, suggesting that BnBZL2* increased BR signaling. Thus, the above results indicated that BR signaling and regulatory mechanisms were conserved in B. napus and A. thaliana.
  • [1]
    Mitchell JW, Mandava N, Worley JF, Plimmer JR, Smith MV. Brassins-a new family of plant hormones from rape pollen[J]. Nature, 1970, 225(5237):1065-1066.
    [2]
    Belkhadir Y, Jaillais Y. The molecular circuitry of brassinosteroid signaling[J]. New Phytol, 2015, 206(2):522-540.
    [3]
    Sasse JM. Physiological actions of Brassinosteroids:an update[J]. J Plant Growth Regul, 2003, 22(4):276-288.
    [4]
    Clouse SD. Brassinosteroid signal transduction:from receptor kinase activation to transcriptional networks regulating plant development[J]. Plant Cell, 2011, 23(4):1219-1230.
    [5]
    Huang HY, Jiang WB, Hu YW, Wu P, Zhu JY, et al. BR signal influences Arabidopsis ovule and seed number through regulating related genes expression by BZR1[J]. Mol Plant, 2013, 6(2):456-469.
    [6]
    Jiang WB, Huang HY, Hu YW, Zhu SW, Wang ZY, Lin WH. Brassinosteroid regulates seed size and shape in Arabidopsis[J]. Plant Physiol, 2013, 162(4):1965-1977.
    [7]
    Li J, Nagpal P, Vitart V, McMorris TC, Chory J. A role for brassinosteroids in light-dependent development of Arabidopsis[J]. Science, 1996, 272(5260):398-401.
    [8]
    Ohnishi T, Godza B, Watanabe B, Fujioka S, Hategan L, et al. CYP90A1/CPD, a brassinosteroid biosynthetic cytochrome P450 of Arabidopsis, catalyzes C-3 oxidation[J]. J Biol Chem, 2012, 287(37):31551-31560.
    [9]
    Choi YH, Fujioka S, Harada A, Yokota T, Takatsuto S, Sakurai A. A brassinolide biosynthetic pathway via 6-deoxocastasterone[J]. Phytochemistry, 1996, 43(3):593-596.
    [10]
    Asami T, Yoshida S. Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor[J]. Plant Physiol, 2000, 123(1):93.
    [11]
    孙超, 黎家. 油菜素甾醇类激素的生物合成、代谢及信号转导[J]. 植物生理学报, 2017, 53(3):291-307.

    Sun C, Li J. Biosynthesis, metabolism and signal transduction of brassinosteroids[J]. Journal of Plant Physiology, 2017, 53(3):291-307.
    [12]
    Wang ZY, Bai MY, Oh E, Zhu JY. Brassinosteroid signaling network and regulation of photomorphogenesis[J]. Annu Rev Genet, 2012, 46:701-724.
    [13]
    Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling[J]. Cell, 2002, 110(2):213-222.
    [14]
    Kim TW, Guan S, Sun Y, Deng Z, Tang W, et al. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors[J]. Nat Cell Biol, 2009, 11(10):1254-1260.
    [15]
    Kim TW, Guan S, Burlingame AL, Wang ZY. The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2[J]. Mol Cell, 2011, 43(4):561-571.
    [16]
    He JX, Gendron JM, Yang Y, Li J, Wang ZY. The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis[J]. Proc Natl Acad Sci USA, 2002, 99(15):10185-10190.
    [17]
    Yin Y, Wang ZY, Mora-Garcia S, Li J, Yoshida S, et al. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation[J]. Cell,2002, 109(2):181-191.
    [18]
    Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, et al. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint[J]. Plant Cell, 2000, 12(9):1591-1606.
    [19]
    Bai MY, Zhang LY, Gampala SS, Zhu SW, Song WY, et al. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice[J]. Proc Natl Acad Sci USA, 2007, 104(34):13839-13844.
    [20]
    Tong H, Chu C. Brassinosteroid signaling and application in rice[J]. J Genet Genomics, 2012, 39(1):3-9.
    [21]
    Zhang Y, Zhang YJ, Yang BJ, Yu XX, Wang D, et al. Functional characterization of GmBZL2(AtBZR1 like gene) reveals the conserved BR signaling regulation in Glycine max[J]. Sci Rep, 2016, 6:31134.
    [22]
    Yang BJ, Lin WH, Fu FF, Xu ZH, Xue HW. Receptor-like protein ELT1 promotes brassinosteroid signaling through interacting with and suppressing the endocytosis-mediated degradation of receptor BRI1[J]. Cell Res, 2017, 27(9):1182-1185.
    [23]
    朱聪明. 油菜素甾醇类及茉莉酸类化合物对油菜籽粒产量及品质的调节作用[D]. 武汉:华中农业大学, 2013.
    [24]
    Dhaubhadel S, Chaudhary S, Dobinson KF, Krishna P. Treatment with 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings[J]. Plant Mol Biol, 1999, 40(2):333-342.
    [25]
    Derevyanchuk M, Kretynin S, Iakovenko O, Litvinovskaya R, Zhabinskii V, et al. Effect of 24-epibrassinolide on Brassica napus alternative respiratory pathway, guard cells movements and phospholipid signaling under salt stress[J]. Steroids, 2017, 117:16-24.
    [26]
    Sahni S, Prasad BD, Liu Q, Grbic V, Sharpe A, et al. Overexpression of the brassinosteroid biosynthetic geneDWF4 in Brassica napus simultaneously increases seed yield and stress tolerance[J]. Sci Rep, 2016, 6:28298.
    [27]
    Chory J, Nagpal P, Peto CA. Phenotypic and genetic analysis ofdet2, a new mutant that affects light-regulated seedling development in Arabidopsis[J]. Plant Cell, 1991, 3(5):445-459.
    [28]
    Nagata N, Min YK, Nakano T, Asami T, Yoshida S. Treatment of dark-grown Arabidopsis thaliana with a brassinosteroid-biosynthesis inhibitor, brassinazole, induces some characteristics of light-grown plants[J]. Planta, 2000, 211(6):781.
    [29]
    Wang ZY, Nakano T, Gendron J, He J, Chen M, et al. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis[J]. Dev Cell, 2002, 2(4):505-513.
    [30]
    Shimada Y, Goda H, Nakamura A, Takatsuto S, Fujioka S, Yoshida S. Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis[J]. Plant Physiol, 2003, 131(1):287-297.
    [31]
    Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann KA. Over-expression ofDWARF4 in brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis[J]. Plant J, 2001, 26(6):573-582.
    [32]
    Manoli A, Trevisan S, Quaggiotti S, Varotto S. Identification and characterization of the BZR transcription factor family and its expression in response to abiotic stresses in Zea mays L.[J]. Plant Growth Regul, 2018, 84(3):423-436.
    [33]
    Saha G, Park JI, Jung HJ, Ahmed NU, Kayum MA, et al. Molecular characterization of BZR transcription factor family and abiotic stress induced expression profiling in Brassica rapa[J]. Plant Physiol Biochem, 2015, 92:92-104.
  • Related Articles

    [1]Rao Li-Ping, Su Wen-Jin, Liu Yi, Song Tian-Xiao, Soviguidi Deka Reine Judesse, Yang Xin-Sun, Zhang Wen-Ying. Cloning and expression analysis of Ipomoea batatas (L.) Lam. gene IbPAL[J]. Plant Science Journal, 2020, 38(3): 360-368. DOI: 10.11913/PSJ.2095-0837.2020.30360
    [2]Liu Tao, Xiong Qin, Xu Ying-Yan, Cai Wei-Wei, Lü Shi-Heng, She Wen-Qin, Chen Gui-Xin. Selection of reference genes for qRT-PCR normalization in Cestrum nocturnum during flowering[J]. Plant Science Journal, 2017, 35(4): 534-542. DOI: 10.11913/PSJ.2095-0837.2017.40534
    [3]CAO Jing, XU Dong-Sheng, HUANG Dai-Hong, YUAN Jun-Wen, ZHAO Juan, WANG Wen-Yan, LAN Hai-Yan. Cloning, Characterization, and Functional Analysis of Seed Coat Mucilage-related Gene TTG1 from Lepidium perfoliatum[J]. Plant Science Journal, 2014, 32(4): 371-382. DOI: 10.3724/SP.J.1142.2014.40371
    [4]CHEN Ling, SU Pei-Pei, TONG Han-Wen, LIU Yi-Ke, ZHU Zhan-Wang, YANG Guang-Xiao, GAO Chun-Bao, HE Guang-Yuan. Isolation of the Promoter Region of a Pollen-specific Gene PSG076 by Inverse-PCR[J]. Plant Science Journal, 2012, (3): 309-314. DOI: 10.3724/SP.J.1142.2012.30309
    [5]YANG Mei, XU Li-Ming, LIU Yan-Ling. Optimization and Establishment of SRAP-PCR in Lotus[J]. Plant Science Journal, 2012, 30(1): 85-91. DOI: 10.3724/SP.J.1142.2012.10085
    [6]ZHANG Yu-Bao, XIE Zhong-Kui, WANG Ya-Jun, GUO Zhi-Hong, TONG Xun-Zhang. Simultaneously Detection of Two Main Lanzhou Lily (Lilium davidii var. unicolor) Viruses by RT-PCR[J]. Plant Science Journal, 2010, 28(6): 744-749.
    [7]ZHUANG Dong-Hong, HUANG Xiu-Li, WU Yi-Rui, LIN Yi-Han, ZHENG Han-Pan. Optimization and Application of RAPD-PCR System for Cucurbita[J]. Plant Science Journal, 2005, 23(5): 422-426.
    [8]LI Jing-Fang, HUANG Shao-Yi, TIAN Ren-Peng, ZHANG Luo-Zhen, FANG Cheng-Xiang. An Improved Method Suited to Extract Total RNA Used to RT-PCR from Fir Plant[J]. Plant Science Journal, 2004, 22(6): 551-556.
    [9]WANG Li, YI Ping, WAN Cui-Xiang, ZHU Ying-Guo. AP-PCR Analysis for Mitochondria DNA of CMS Rice Honglian Type[J]. Plant Science Journal, 2002, 20(6): 405-408.
    [10]Peng Yanhua, Huang Yongxiu, Qi Yipeng. A COUPLED ONE-STEP METHOD OF REVERSE TRANSCRIPTION(RT)FOR GENERATION OF OPEN READING OF G PROTEIN αSUBUNIT GENE[J]. Plant Science Journal, 1996, 14(2): 97-100.
  • Cited by

    Periodical cited type(4)

    1. 杨正鑫,于潘,王全喜,尤庆敏. 中国硅藻新记录种——帕拉特利氏藻. 西北植物学报. 2024(05): 832-835 .
    2. 刘琪,李佳佳,冯佳,吕俊平,南芳茹,刘旭东,谢树莲. 蟒河国家自然保护区硅藻植物新记录. 山西大学学报(自然科学版). 2021(01): 194-198 .
    3. 刘腾腾,罗粉,王艳璐,王全喜,尤庆敏. 上海淀山湖2种硅藻植物中国新记录. 西北植物学报. 2020(01): 170-173 .
    4. 任军,曾琛,雷洲,郑延丽. 茂兰自然保护区4种纵裂菌科真菌形态学特征及分子系统学研究. 贵州师范学院学报. 2019(06): 26-31 .

    Other cited types(1)

Catalog

    Article views (719) PDF downloads (840) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return