Advance Search
Wu Gao-Qiong, Li Yuan-Bo, Wang Wei-Jia, Wang Qi-Gang, Chen Min, Qiu Xian-Qin, Yan Hui-Jun, Jian Hong-Ying, Zhou Ning-Ning, Zhang Hao, Tang Kai-Xue, Li Shu-Bin. Sequence diversity of the FT gene in diploid Rosa[J]. Plant Science Journal, 2018, 36(6): 842-850. DOI: 10.11913/PSJ.2095-0837.2018.60842
Citation: Wu Gao-Qiong, Li Yuan-Bo, Wang Wei-Jia, Wang Qi-Gang, Chen Min, Qiu Xian-Qin, Yan Hui-Jun, Jian Hong-Ying, Zhou Ning-Ning, Zhang Hao, Tang Kai-Xue, Li Shu-Bin. Sequence diversity of the FT gene in diploid Rosa[J]. Plant Science Journal, 2018, 36(6): 842-850. DOI: 10.11913/PSJ.2095-0837.2018.60842

Sequence diversity of the FT gene in diploid Rosa

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China(31660583).

More Information
  • Received Date: May 20, 2018
  • Available Online: October 31, 2022
  • Published Date: December 27, 2018
  • To understand the polymorphism of the FLOWERING LOCUS T(FT) homologous gene in Rosa and its relationship between different rose germplasm types, we cloned the FT homologous genes from 73 diploid Rosa germplasms. The sequence polymorphisms of the FT genes were analyzed using multidimensional scaling(MDS) cluster visualization. In total, 215 nucleotide polymorphism loci were detected in 73 diploid materials, including 214 SNPs and one deletion locus, with an average of 185 bases and one mutation. For amino acid polymorphism, a total of 35 amino acid mutations were detected, with an average of 379.6 amino acids and one mutation. Statistical analysis of the mutation sites showed that the 39, 258, and 426 bp sites were high-frequency mutation sites, and the bases were A or C mutated to T. The MDS cluster visualization analysis results indicated that the differences in the base mutations of the FT gene coding region of the three taxa were wild species > Sect. Chinenses DC. > Chinese old garden roses, and the amino acid variance within groups was Chinese old garden roses > Sect. Chinenses DC. > wild species. Thus, we speculated that during the long-term cultivation and domestication of the Chinese old garden rose, the FT genes experienced strong artificial selection pressure. We further identified close genetic similarity among the Sect. Chinenses DC., wild species, and Chinese old garden roses. However, the genetic relationship between wild species and Sect. Chinenses DC. was further apart. This indicates that Sect. Chinenses DC. may be an important parent of the Chinese old garden roses.
  • [1]
    Pin PA, Nilsson O. The multifaceted roles of FLOWERING LOCUS T in plant development[J]. Plant Cell Environ, 2012, 35(10):1742-1755.
    [2]
    Wellmer F, Riechmann JL. Gene networks controlling the initiation of flower development[J]. Trends Genet, 2010, 26(12):519-527.
    [3]
    刘丽敏, 陈福禄, 张晓玫, 武小霞, 陈庆山, 等. 成花素基因FT及其调控机制研究进展[J]. 分子植物育种, 2016, 14(7):1705-1717.

    Liu LM, Chen FL, Zhang XM, Wu XX, Chen QS, et al. Advances on florigen gene FT and its regulatory mechanism[J]. Molecular Plant Breeding, 2016, 14(7):1705-1717.
    [4]
    Turck F, Fornara F, Coupland G. Regulation and identity of florigen:FLOWERING LOCUS T moves center stage[J]. Annu Rev Plant Biol, 2008, 59(1):573-594.
    [5]
    Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T, et al. A pair of related genes with antagonistic roles in mediating flowering signals[J]. Science, 1999, 286(5446):1960-1962.
    [6]
    Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, et al. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis[J]. Science, 2007, 316(5827):1030-1033.
    [7]
    Notaguchi M, Abe M, Kimura T, Daimon Y, Kobayashi T, et al. Long-distance, graft-transmissible action of Arabidopsis FLOWERING LOCUS T protein to promote flowering[J]. Plant Cell Physiol, 2008, 49(11):1645-1658.
    [8]
    Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, et al. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex[J]. Science, 2005, 309(5737):1052-1056.
    [9]
    Taoka K, Ohki I, Tsuji H, Furuita K, Hayashi K, et al. 14-3-3 proteins act as intracellular receptors for riceHd3a florigen[J]. Nature, 2011, 476(7360):332-335.
    [10]
    Bohlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, et al. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees[J]. Science, 2006, 312(5776):1040-1043.
    [11]
    Molinero-Rosales N, Latorre A, Jamilena M, Lozano R. SINGLE FLOWER TRUSS regulates the transition and maintenance of flowering in tomato[J]. Planta, 2004, 218(3):427-434.
    [12]
    吕经娟, 李淑斌, 周宁宁, 蹇洪英, 王其刚, 等.‘光叶蔷薇’器官间接再生体系的建立及GUS基因转化的初步研究[J]. 植物科学学报, 2014, 32(2):139-147.

    Lü JJ, Li SB, Zhou NN, Jian HY, Wang QG, et al. Callus induction and plant regeneration of Rosa wichuraiana ‘Basye's thornless’[J]. Plant Science Journal, 2014, 32(2):139-147.
    [13]
    Raymond O, Gouzy J, Just J, Badouin H, Verdenaud M, et al. The Rosa genome provides new insights into the domestication of modern roses[J]. Nat Genet, 2018, 50(6):772-777.
    [14]
    Hurst CC. Notes on the origin and evolution of our garden roses[J]. J Roy Hort Soc, 1941, 66:73-82.
    [15]
    Ogisu M. Some thoughts on the history of China roses[J]. New Plantsman, 1996, 3:152-157.
    [16]
    Li SB, Zhou NN, Zhuo Q, Yan HJ, Jian HY, et al. Inheri-tance of perpetual blooming in Rosa chinensis ‘Old Blush’[J]. Hortic Plant J, 2015, 1(2):108-112.
    [17]
    李淑斌, 周宁宁, 周青, 晏慧君, 蹇洪英, 等.‘月月粉’连续开花习性遗传规律分析[J]. 园艺学报, 2015, 42(11):2223-2228.

    Li SB, Zhou NN, Zhou Q, Yan HJ, Jian HY, et al. Inheritance of perpetual blooming in Rosa chinensis ‘Old Blush’[J]. Acta Horticulturae Sinica, 2015, 42(11):2223-2228.
    [18]
    Remay A, Lalanne D, Thouroude T, Couviour FL, Oyant LH, et al. A survey of flowering genes reveals the role of gibberellins in floral control in rose[J]. Theor Appl Genet, 2009, 119(5):767-781.
    [19]
    Kawamura K, Oyant LH, Crespel L, Thouroude T, Lalanne D, et al. Quantitative trait loci for flowering time and inflorescence architecture in rose[J]. Theor Appl Genet, 2011, 122(4):661-675.
    [20]
    Randoux M, Jeauffre J, Thouroude T, Vasseur F, Hamama L, et al. Gibberellins regulate the transcription of the continuous flowering regulator, RoKSN, a roseTFL1 homologue[J]. J Exp Bot, 2012, 63(18):6543-6554.
    [21]
    Randoux M, Daviere J, Jeauffre J, Thouroude T, Pierre S, et al. RoKSN, a floral repressor, forms protein comp-lexes with RoFD and RoFT to regulate vegetative and reproductive development in rose[J]. New Phytol, 2014, 202(1):161-173.
    [22]
    Otagaki S, Ogawa Y, Oyant LH, Foucher F, Kawamura K, et al. Genotype of FLOWERING LOCUS T homologue contributes to flowering time differences in wild and cultivated roses[J]. Plant Biol, 2015, 17(4):808-815.
    [23]
    Ohta T, Kimura M. Behavior of neutral mutants influenced by associated over dominant loci in finite populations[J]. Genetics, 1971, 141:413-429.
    [24]
    杨海娇, 张德强. 植物基因组拷贝数变异研究现状[J]. 分子植物育种, 2015, 13(8):1895-1910.

    Yang HJ, Zhang DQ. Copy number variations in plant genomes[J]. Molecular Plant Breeding, 2015, 13(8):1895-1910.
    [25]
    田孟良, 黄玉碧, 谭功燮, 刘永建, 荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(5):729-736.

    Tian ML, Huang YB, Tan GX, Liu YJ, Rong TZ. Sequence polymorphism of waxy genes in landraces of waxy maize from Southwest China[J]. Acta Agronomica Sinica, 2008, 34(5):729-736.
    [26]
    张乐, 李英慧, 刘章雄, 邱丽娟. 栽培大豆(G. max)和野生大豆(G. soja)的Glyma13g21630基因多样性[J]. 作物学报, 2011, 37(10):1724-1734.

    Zhang L, Li YH, Liu ZX, Qiu LJ. GeneGlyma13g21630 diversity in cultivated(G. max) and wild(G. soja) soybeans[J]. Acta Agronomica Sinica, 2011, 37(10):1724-1734.
    [27]
    Olsen KM, Womack A, Garrett AR, Suddith JI, Purugganan MD, et al. Contrasting evolutionary forces in the Arabidopsis thaliana floral developmental pathway[J]. Genetics, 2002, 160(4):1641-1650.
    [28]
    丁群. 成花相关基因在柑橘属种间的遗传多样性[D]. 武汉:华中农业大学, 2013.
    [29]
    张君慧. 在驯化和育种过程中籼稻功能基因单核苷酸多态性的变化[D]. 南昌:南昌大学, 2013.
    [30]
    张守伟. 不同生育期组大豆品种FT家族基因的自然变异分析[D]. 北京:中国农业科学院, 2016.
    [31]
    Jian HY, Zhang T, Wang QG, Li SB, Zhang H, et al. Karyological diversity of wild Rosa in Yunnan, southwes-tern China[J]. Genet Resour Crop Evol,2013, 60(1):115-127.
    [32]
    蹇洪英, 张颢, 王其刚, 唐开学, 李树发, 等. 中国古老月季品种的核型研究[J]. 园艺学报, 2010, 37(1):83-88.

    Jian HY, Zhang H, Wang QG, Tang KX, Li SF, et al. Karylogical study of Chinese old garden roses[J]. Acta Horticulturae Sinica, 2010, 37(1):83-88.
    [33]
    张婷, 蹇洪英, 王其刚, 张颢, 唐开学, 等. 11个中国古老月季品种的核型分析[J]. 西南农业学报, 2010, 23(5):1656-1659.

    Zhang T, Jian HY, Wang QG, Zhang H, Tang KX, et al. Study on karyotype of eleven Chinese old garden roses[J]. Southwest China Journal of Agricultural Sciences, 2010, 23(5):1656-1659.
    [34]
    Bronstein AM, Bronstein MM, Kimmel R. Generalized multidimensional scaling:a framework for isometry-invariant partial surface matching[J]. Proc Natl Acad Sci USA, 2006, 103(5):1168-1172.
    [35]
    Scariot V, Akkak A, Botta R. Characterization and genetic relationships of wild species and old garden roses based on microsatellite analysis[J]. J Amer Soc Hortic Sci, 2006, 131(1):66-73.
    [36]
    许凤, 李凌, 邱显钦, 唐开学, 蹇洪英, 等. 云南39个野生蔷薇种间遗传多样性的SSR分析[J]. 西南大学学报:自然科学版, 2009, 31(6):83-87.

    Xu F, Li L, Qiu XQ, Tang KX, Jian HY, et al. Analysis of genetic diversity of some Rosa wild species in Yunnan based on SSR markers[J]. Journal of Southwest Univer-sity:Natural Science Edition, 2009, 31(6):83-87.
    [37]
    唐开学, 邱显钦, 张颢, 李树发, 王其刚, 等. 云南蔷薇属部分种质资源的SSR遗传多样性研究[J]. 园艺学报, 2008, 35(8):1227-1232.

    Tang KX, Qiu XQ, Zhang H, Li SF, Wang QG, et al. Study on genetic diversity of some Rosa germplasm in Yunnan based on SSR markers[J]. Acta Horticulturae Sinica, 2008, 35(8):1227-1232.
    [38]
    Plotkin JB, Robins H, Levine AJ. Tissue-specific codon usage and the expression of human genes[J]. Proc Natl Acad Sci USA, 2004, 101(34):12588-12591.
    [39]
    赖瑞联, 林玉玲, 钟春水, 赖钟雄.龙眼生长素受体基因TIR1密码子偏好性分析[J]. 园艺学报, 2016, 43(4):771-780.

    Lai RL, Lin YL, Zhong CS, Lai ZX. Analysis of codon bias of auxin receptor gene TIR1 in Dimocarpus longan[J]. Acta Horticulturae Sinica, 2016, 43(4):771-780.
    [40]
    王书芳. 二倍体月季种质资源基因组第三连锁群遗传变异及群体结构研究[D]. 昆明:云南大学, 2015.
    [41]
    Iwata H, Gaston A, Remay A, Thouroude T, Jeauffre J, et al. The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry[J]. Plant J, 2012, 69(1):116-125.
  • Related Articles

    [1]LI Xin-Wei, LI Jian-Qiang, WANG Ying-Ming, WANG Heng-Chang, LI Xiao-Dong. Studies on the Floristic Characteristics and Geographical Distribution of the Genus Clematis Linnaeus from Hubei, China[J]. Plant Science Journal, 2004, 22(4): 294-300.
    [2]ZHENG Gui-Ling, LIU Sheng-Xiang, CHEN Gui-Ying, WANG Chang-Li, CHEN Niu. Studies on the Vertical Distribution of Mosses in Mt. Jiugongshan,Hubei,China[J]. Plant Science Journal, 2002, 20(6): 429-432.
    [3]LIU Song-Bai, LI Jian-Qiang, WANG Ying-Ming, WANG Heng-Chang, LI Xiao-Dong. Some New Recorded Plants of Dryopteris Adanson from Hubei[J]. Plant Science Journal, 2002, 20(6): 425-426.
    [4]Zhang Yinhua, Xiong Xiufang, Xu Ying. ANALYSIS OF HUBEI VOLATILE OIL OF GARDENIA FLOWER BY GC/MS[J]. Plant Science Journal, 1999, 17(1): 61-64.
    [5]Li Jianqiang, Zhang xinhua. A REVISION OF FAGACEAE FROM HUBEI[J]. Plant Science Journal, 1998, 16(3): 241-252.
    [6]Wang Shiyun, Xu Huizhu, Zhao Zien, Peng Fusong, Wan Caigan. A STUDY ON THE CONSERVATION OF THE RARE AND THREATENED PLANTS IN HUBEI AND ITS SURROUNDINGS[J]. Plant Science Journal, 1995, 13(4): 354-368.
    [7]Zheng Jiehua. RESEARCH ON THE BASIC ELEMENTS AND MAIN FEATURES OF PTERIDOPHYTES FLORA IN HUBEI PROVINCE[J]. Plant Science Journal, 1987, 5(3): 227-233.
    [8]Zheng Zhong. ON THE PRECIOUS AND RARE PLANTS IN HUBEI[J]. Plant Science Journal, 1986, 4(3): 279-296.
    [9]Wang Yingming. ON THE VEGETATION REGIONALIZATION OF HUBEI PROVINCE[J]. Plant Science Journal, 1985, 3(2): 165-176.
    [10]Lu Debing, Bi Liejue. A PRELIMINARY REPORT OF CHARACEAE FROM HUBEI AND JIANGXI PROVINCES[J]. Plant Science Journal, 1985, 3(2): 147-155.

Catalog

    Article views (587) PDF downloads (795) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return