Advance Search
Zhang Ping, Hao Xiu-Ying, Hu De-Chang, Zhu Jian-Jun. Differential thermal analysis on the freezing dynamics of Chimonanthus praecox and Photinia serrulata stems[J]. Plant Science Journal, 2019, 37(4): 551-558. DOI: 10.11913/PSJ.2095-0837.2019.40551
Citation: Zhang Ping, Hao Xiu-Ying, Hu De-Chang, Zhu Jian-Jun. Differential thermal analysis on the freezing dynamics of Chimonanthus praecox and Photinia serrulata stems[J]. Plant Science Journal, 2019, 37(4): 551-558. DOI: 10.11913/PSJ.2095-0837.2019.40551

Differential thermal analysis on the freezing dynamics of Chimonanthus praecox and Photinia serrulata stems

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31371540, 31260080), Shandong Agricultural Engineering Projects for Improved Seeds (2016LZGC038), and Yantai Developing Projects for Science and Technology (2016ZH064).

More Information
  • Received Date: January 15, 2019
  • Revised Date: February 15, 2019
  • Available Online: October 31, 2022
  • Published Date: August 27, 2019
  • At a cooling rate of (0.66 ±0.2)℃/min, the thermodynamic behavior of living and heat-killed (100℃ for 10 min) young stems of Photinia serrulata Lindl and Chimonanthus praecox (L.) Link. were investigated using high-resolution differential thermal analysis (DTA) during freezing from 0℃--20℃. The freezing features of the stems were also analyzed based on their morphological structures. The DTA curves from living stems of P. serrulata and C. praecox showed three exothermic peaks, whereas those from heat-killed stems showed one exothermic peak. Based on the dynamics of the exotherms, structures of the stems, and thermal conductance, the three exothermic peaks from living tissues likely represented the freezing process in the stems in the following order:freezing of apoplastic water, freezing dehydration of cambium and phloem, and finally freezing dehydration of pith cells. The simulation of uniform tissue sap using filter papers drenched with normal saline also showed a single exothermic peak, which was similar to the thermal behavior of the killed stems, indicating the freezing of a solution with no isolation of the cell membrane. These results showed that many details on heat release, freezing temperature, and dynamics of the freezing process in tissues can be revealed by DTA, which is thus suitable for analysis of freezing dynamics in plants.
  • [1]
    Sklenář P, Kučerová A, Macek P, Macková J. The frost-resistance mechanism in páramo plants is related to geographic origin[J]. New Zeal J Bot, 2012, 50(4):391-400.
    [2]
    Briceño VF, Harris-pascal D, Nicotra AB, Williams E, Balla MC. Variation in snow cover drives differences in frost resistance in seedlings of the alpine herb Aciphylla glacialis[J]. Environ Exp Bot, 2014, 106:174-181.
    [3]
    Gusta LV, Wisniewski M. Understanding plant cold hardiness, an opinion[J]. Physiol Plant, 2013, 147(1):4-14.
    [4]
    Martin M, Gavazov K, Körner C, Hattenschwiler S, Rixen C. Reduced early growing season freezing resistance in alpine treeline plants under elevated atmospheric CO2[J]. Global Change Biol, 2010, 16(3):1057-1070.
    [5]
    Koehler K, Center A, Cavender-bares J. Evidence for a freezing tolerance-growth rate trade-off in the live oaks (Quercus series Virentes) across the tropical-temperate divide[J]. New Phytol, 2012, 193(3):730-744.
    [6]
    Sakai A, Larcher W. Frost Survival of Plants:Responses and Adaptation to Freezing Stress[M]. Berlin:Springer-Verlag Berlin Heidelberg, 1987:1-321.
    [7]
    Miura K, Furumoto T. Cold signaling and cold response in plants[J]. Int J Mol Sci, 2013, 14(3):5312-5337.
    [8]
    袁金凤, 牛亚洁, 陈红贤, 董倩倩, 范亚丽, 刘忠华. 春季-冻融交替时期9种落叶及半常绿小灌木抗寒性综合评价[J]. 植物科学学报, 2014, 32(6):630-637.

    Yuan JF, Niu YJ, Chen HX, Dong QQ, Fan YL, Liu ZH. Comprehensive evaluation on cold resistance of nine kinds of deciduous and semi-evergreen dwarf shrubs from the freeze to melt period in spring[J]. Plant Science Journal, 2014, 32(6):630-637.
    [9]
    Taiz L, Zeiger E. Plant Physiology[M]. 5th ed. New York:Sinauer Associates Incorporated, 2010.
    [10]
    Li PH, Sakai A. Plant Cold Hardiness and Freezing Stress:Mechanisms and Crop Implications[M]. Cambridge:Academic Press, 1978.
    [11]
    Li PH, Christersson L. Advances in Plant Cold Hardiness[M]. Boca Raton:CRC Press, 1993.
    [12]
    Arias NS, Bucci SJ, Scholz FG, Goldstein G. Freezing avoidance by supercooling in Olea europaea cultivars:the role of apoplastic water, solute content and cell wall rigidity[J]. Plant Cell Environ, 2015, 38(10):2061-2070.
    [13]
    Kuprian E, Munkler C, Resnyak A, Zimmermann S, Tuong TD, et al. Complex bud architecture and cell-specific chemical patterns enable supercooling of Picea abies bud primordia[J]. Plant Cell Environ, 2017, 40:3101-3112.
    [14]
    Kuprian E, Tuong TD, Pfaller K, Wagner J, Livingston DP, et al. Persistent supercooling of reproductive shoots is enabled by structural ice barriers being active despite an intact xylem connection[J]. PLoS One, 2016, 11(9):e0163160.
    [15]
    董红业, 孙万仓, 刘自刚, 张正丽, 杨刚, 等. 自交对白菜型冬油菜生理生化特性及抗寒性的影响[J]. 西北植物学报, 2014, 34(11):2277-2282.

    Dong HY, Sun WC, Liu ZG, Zhang ZH, Yang G, et al. Effect of selfing on physiological and biochemical characteristics and cold resistance of winter turnip rape (Brassica campestris L.)[J]. Acta Bot Boreali-Occident Sin, 2014, 34(11):2277-2282.
    [16]
    杨玉珍, 雷志华, 彭方仁. 低温诱导蛋白及其与植物的耐寒性研究进展[J]. 西北植物学报, 2007, 27(2):421-428.

    Yang YZ, Lei ZH, Peng FR. Research advances about low-temperature-induced proteins and the cold tolerance in plants[J]. Acta Bot Boreali-Occident Sin, 2007, 27(2):421-428.
    [17]
    Melissa B, Walker VK. Ice-binding proteins in plants[J]. Front Plant Sci, 2017, 8:2153-2162.
    [18]
    Wisniewski M, Gusta L, Neuner G. Adaptive mechanisms of freeze avoidance in plants:a brief update[J]. Environ Exp Bot, 2014, 99:133-140.
    [19]
    Los DA, Mironov KS, Allakhverdiev SI. Regulatory role of membrane fluidity in gene expression and physiological functions[J]. Photosynthesis Research, 2013, 116(2-3):489-509.
    [20]
    Shahandashti SSK, Amiri RM, Zeinali H, Ramezanpour SS. Change in membrane fatty acid compositions and cold-induced responses in chickpea[J]. Mol Bio Rep, 2013, 40(2):893-903.
    [21]
    冯兆忠, 王静, 冯宗炜. 三唑酮对黄瓜幼苗生长及抗寒性的影响[J]. 应用生态学报, 2003, 14(10):1637-1640.

    Feng ZZ, Wang J, Feng ZW. Effect of triadimefon on cucumber seedlings growth and their resistance to chilling injury[J]. Chin J App Ecol, 2003, 14(10):1637-1640.
    [22]
    Riikonen J, Kontunen-soppela S, Vapaavuori E, Tervahauta A, Tuomainen M, et al. Carbohydrate concentrations and freezing stress resistance of silver birch buds grown under elevated temperature and ozone[J]. Tree Physiol, 2013, 33(3):311-319.
    [23]
    Asahin AE. The freezing process of plant cells[J]. Contrib Inst Low Temp Sci, 1956, 10:83-126.
    [24]
    Pearce RS. Extracellular ice and cell shape in frost-stressed cereal leaves:A low-temperature scanning-electron-microscopy study[J]. Planta, 1988, 175(3):313-24.
    [25]
    Pearce RS. Plant freezing and damage[J]. Ann Bot, 2001, 87(3):417-424.
    [26]
    Diller KR. Intracellular freezing, effect of extracellular supercooling[J]. Cryobiology, 1975, 12(5):480-485.
    [27]
    Zhu JJ, Beck E. Water relations of Pachysandra leaves during freezing and thawing:Evidence for a negative pressure potential alleviating freeze-dehydration stress[J]. Plant Plysiol, 1991, 97:1146-1153.
    [28]
    RajashekAR CB, Burke MJ. Freezing characteristics of rigid plant tissues:development of cell tension during extracellular freezing[J]. Plant Plysiol, 1996, 111(2):597-603.
    [29]
    于瑞凤, 朱建军. 女贞和冬青卫矛叶片低温下胞外结冰模式的热力学新证据[J]. 植物学报, 2018, 53(2):203-211.

    Yu RF, Zhu JJ. New evidence for the mode of extracellular freezing in leaves of Ligustrum lucidum and Euonymus japonicus under low temperatures[J]. Chinese Bulletin of Botany, 2018, 53(2):203-211.
    [30]
    Ball MC, Wolfe J, Canny M, Hofmann M, Nicotra AB. Space and time dependence of temperature and freezing in evergreen leaves[J]. Funct Plant Biol, 2002, 29(11):1259-1272.
    [31]
    Stier JC, Filiault DL, Wisniewski M, Palta JP. Visualization of freezing progression in turfgrasses using infrared video thermography[J]. Crop Sci, 2003, 43(1):415-420.
    [32]
    Hacker J, Neuner G. Ice propagation in plants visualized at the tissue level by infrared differential thermal analysis (IDTA)[J]. Tree Physiol, 2007, 27(12):1661-1670.
  • Related Articles

    [1]WANG Lei, ZHANG Tong, LU Xun-Ling, WANG Xiao-Hui, GU Yan-Fang. Changes in Alien Invasive Plants in Jigong Mountain National Nature Reserve of Henan Province from 1994 - 2014[J]. Plant Science Journal, 2016, 34(3): 361-370. DOI: 10.11913/PSJ.2095-0837.2016.30361
    [2]WANG Wen-Tsai. Aconitum luanchuanense, a New Species of Ranunculaceae from Henan, China[J]. Plant Science Journal, 2015, 33(2): 141-143. DOI: 10.11913/PSJ.2095-0837.2015.20141
    [3]TIAN Guo-Hang, FU Da-Li, ZHAO Tian-Bang. A New Variety of Yulania Spach from Henan[J]. Plant Science Journal, 2004, 22(4): 327-328.
    [4]ZHU Chang-Shan, WAN Si-Xin, LI He-Min. Textual Research on Phleum pratense L. in Flora of Henan and Two Alien Species of Phalaris L.[J]. Plant Science Journal, 2003, 21(4): 319-320.
    [5]Yang Xiangfu, Li Jingyuan, Wang Taixia, Yang Lehe. STUDY ON THE NECTAR AND POLLEN PLANTS IN HENAN PROVINCE[J]. Plant Science Journal, 2000, 18(3): 211-216.
    [6]Yang Xiangfu, Li Jingyuan, Wang Taixia, Li Faqi, Han Shuliang. STUDY ON THE PTERIDOPHYTIC FLORA OF MOUNTAIN DABIE,HENAN[J]. Plant Science Journal, 1999, 17(2): 153-157.
    [7]Tian Chaoyang, Wang Shuiyi, Yie Yongzhong, Yang Qiusheng, ZhengQinglian, Cheng Dahou. A STUDY ON THE WILD ADORNMENT PLANTS OF MOUNTAIN SONG IN HENAN[J]. Plant Science Journal, 1994, 12(1): 65-70.
    [8]Wang Yinzheng, Sun Zhansheng. A PRELIMINARY APPROACH ON ECOGEOGRAPHIC LAW OF THE WOODY FLORA IN HENAN[J]. Plant Science Journal, 1992, 10(3): 265-272.
    [9]He Wentong, Ren Xianwei. STUDIES ON THE WOODY PLANTS FLORA OF JIGONG MOUNTAIN IN HENAN[J]. Plant Science Journal, 1991, 9(4): 337-346.
    [10]Ma Jie. TWO NEW SPECIES OF LEPIDODENDRON FROM SHANXI FORMATION, YU COUNTY, HENAN[J]. Plant Science Journal, 1988, 6(4): 339-343.
  • Cited by

    Periodical cited type(2)

    1. 石万磊. 凤仙花科种质资源研究现状. 南方农机. 2024(12): 159-161+171 .
    2. 梁晓丽,舒慧娟,王婷,蔡秀珍,丛义艳,旷仁平. 凤仙花近缘种间核型分析与叶表皮微形态研究. 广西植物. 2022(01): 152-160 .

    Other cited types(1)

Catalog

    Article views (540) PDF downloads (504) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return