Advance Search
Wang Xue, Li Zhen, Liu Yan-Ling, Liang Qiong. Response of ex-situ conservation plant flowering phenology to climate change in Wuhan[J]. Plant Science Journal, 2020, 38(1): 88-96. DOI: 10.11913/PSJ.2095-0837.2020.10088
Citation: Wang Xue, Li Zhen, Liu Yan-Ling, Liang Qiong. Response of ex-situ conservation plant flowering phenology to climate change in Wuhan[J]. Plant Science Journal, 2020, 38(1): 88-96. DOI: 10.11913/PSJ.2095-0837.2020.10088

Response of ex-situ conservation plant flowering phenology to climate change in Wuhan

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China (31872136).

More Information
  • Received Date: July 09, 2019
  • Revised Date: September 06, 2019
  • Available Online: October 31, 2022
  • Published Date: February 27, 2020
  • In the current study, we analyzed the flowering phenology of five ex-situ conserved plants, including Sinojackia dolichocarpa C.J.Qi, Sinowilsonia henryi Hemsl., Sinocalycanthus chinensis Cheng et S.Y.Chang, Stewartia sinensis Rehd. et Wils., and Gleditsia vestita Chun et How ex B. G. Li, in Wuhan Botanical Garden, Chinese Academy of Sciences, using meteorological data and interannual variation from 2008 to 2016. Results showed that: (1) Flowering phenology of Sinojackia dolichocarpa occurred 1.25 d earlier per year; Stewartia sinensis flowering time was delayed by 1.35 d per year; and flowering phenology of Gleditsia vestita was delayed by 1.22 d per year. (2) Flowering length for Sinowilsonia henryi increased 1.72 d per year; flowering length for Sinocalycanthus chinensis decreased 1.62 d per year; and flowering length for Stewartia sinensis increased 0.32 d per year. (3) Pearson correlation coefficients were calculated to indicate the relationships among flower phenological periods and related meteorological factors. Results showed that annual precipitation, annual average relative humidity, effective accumulated temperature of more than 10 degrees, and effective accumulated temperature of more than 10 degrees before flowering were correlated with flower phenological, but the main meteorological factors differed from plant to plant.
  • [1]
    Wang H, Dai J, Rutishauser T, Gonsamo A, Wu C, Ge Q. Trends and variability in temperature sensitivity of lilac flowering phenology[J]. J Geophys Res-Biogeo, 2018, 123(3):1-11.
    [2]
    李晓婷, 陈骥, 郭伟. 不同气候类型下植物物候的影响因素综述[J]. 地球环境学报, 2018, 9(1):16-27.

    Li XT, Chen J, Guo W. A review of the influence factors of plant phenology under different climate types[J]. Journal of Earth Environment, 2018, 9(1):16-27.
    [3]
    Lustenhouwer N, Wilschut RA, Williams JL, van der Putten WH, Levine JM. Rapid evolution of phenology during range expansion with recent climate change[J]. Glob Chang Biol, 2018, 24(2):534-544.
    [4]
    朱慧芬, 张长芹, 龚询. 植物引种驯化研究概述[J]. 广西植物, 2003, 23(1):52-61. Zhu HF, Zhang CQ, Gong X. A summary on plant introduction and acclimatization research[J]. Guihaia, 2003, 23(1):52-60.
    [5]
    Razanajatovo M, F hr C, Kleunen MV, Fischer M. Phenological shifts and flower visitation of 185 lowland and alpine species in a lowland botanical garden[J]. Alpine Bot, 2018, 28(1):23-33.
    [6]
    赵俊斌, 张一平, 宋富强, 许再富, 肖云来. 引种保护植物对西双版纳极端冷年的春季物候响应[J]. 植物学报, 2010, 45(3):435-443.

    Zhao JB, Zhang YP, Song FQ, Xu ZF, Xiao YL. Spring phenology of introduced species in response to extreme chilliness in Xishuangbanna tropical botanical garden[J]. Chinese Bulletin of Botany, 2010, 45(4):435-443.
    [7]
    Willis CG, Ruhfel B, Primack RB, Miller-Rushing AJ, Davis CC. Phylogenetic patterns of species loss in Thoreau's woods are driven by climate change[J]. Proc Natl Acad Sci U S A, 2008, 105(44):17029-17033.
    [8]
    Elisabeth B, Andreas H. Spring flowering response to climate change between 1936 and 2006 in Albert, Canada[J]. Bioscience, 2011, 61:514-524.
    [9]
    储吴樾, 张往祥, 范俊俊. 观赏海棠花期性状与有效积温的关系[J]. 福建农林大学学报(自然科学版), 2018, 47(2):153-159.

    Chu WY, Zhang WX, Fan JJ. The relationship between flowering characteristics and the effective accumulated temperature in ornamental crabapple[J]. Fujian Agriculture and Forestry University (Natural Science Edition), 2018, 47(2):153-159.
    [10]
    孟凡栋, 周阳, 崔树娟, 王奇, 斯确多吉, 汪诗平. 气候变化对高寒区域植物物候的影响[J].中国科学院大学学报, 2017, 34(4):498-507.

    Meng FD, Zhou Y, Cui SJ, Wang Q, Si QDQ, Wang SP. Effects of climate changes on plant phenology at high-latitude and alpine regions[J]. University of Chinese Academy of Sciences, 2017, 34(4):498-507.
    [11]
    Hart R, Salick J, Ranjitkar S, Xu JC. Herbarium specimens show contrasting phenological responses to Himalayan climate[J]. P Natl Acad Sci USA, 2014, 111(29):10615-10619.
    [12]
    Taeger S, Sparks T H, Menzel A. Effects of temperature and drought manipulations on seedlings of Scots pine provenances[J]. Plant Biology (Stuttgart, Germany), 2015, 17(2):361-372.
    [13]
    廖碧婷, 黄俊, 李少群, 谢智勇, 王四化, 林蟒, 成明. 广州地区梅花开花期与气象因子的关系[J]. 广东气象, 2018, 40(5):62-64.

    Liao BT, Huang J, Li SQ, Xie ZY, Wang SH, Lin M, Chen M. Relationship between plum flowering phenology and meteorological factors in Guangzhou[J]. Guangdong Meteorology, 2018, 40(5):62-64.
    [14]
    Craine JM, Wolkovich EM, Towne EG, Kembel SW. Flo-wering phenology as a functional trait in a tallgrass prairie[J]. New Phytol, 2012, 193(3):673-682.
    [15]
    Galen C. Why do flowers vary?[J]. BioScience, 1999, 49(8):631.
    [16]
    覃文更, 覃国乐, 覃文渊, 黄承标, 韦爽姿, 韦国富. 单性木兰开花物候与气象因子的相关性分析[J]. 西部林业科学, 2012, 41(5):100-103.

    Qin WG, Qin GL, Qin WY, Huang CB, Wei SZ, Wei GF. Correlation analysis of flowering phenology of Kmeria septentrionalis and meteorological factors[J]. Journal of West China Forestry Science, 2012, 41(5):100-103.
    [17]
    宋福强. 热带引种植物物候和生长量特征及对气候变化的响应[D]. 西双版纳:中国科学院西双版纳植园, 2007.
    [18]
    陶泽兴,仲舒颖,葛全胜,戴君虎,徐韵佳,王焕炯. 1963-2012年中国主要木本植物花期长度时空变化[J]. 地理学报, 2017, 72(1):53-63.

    Tao ZX, Zhong SY, Ge QS, Dai JH, Xu JY, Wang HJ. Spatiotemporal variations in flowering duration of woody plants in China from 1963 to 2012[J]. Acta Geographica Sinca, 2017, 72(1):53-63.
    [19]
    肖宜安, 何平, 李晓红. 濒危植物长柄双花木开花物候与生殖特性[J]. 生态学报, 2004,24(1):14-21.

    Xiao YA, He P, Li XH. The flowering phenology and reproductive features of the endangered plant Disanthus cercid ifolius var. longipes H. T. Chang (Hamamelidaceae)[J]. Acta Ecologica Sinice, 2004, 24(1):14-21.
    [20]
    张毅, 敖妍, 刘觉非, 赵磊磊, 张永明. 文冠果物候期对环境因子的响应[J]. 南京林业大学学报(自然科学版), 2019, 43(5):30-36.

    Zhang Y, Ao Y, Liu JF, Zhao LL, Zhang YM. Response of phenophase of Xanthoceras sorbifolium Bunge to environmental factors[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2019, 43(5):30-36.
    [21]
    陈莉, 石雷, 崔洪霞, 张爱英, 张德山, 王玲, 夏菲. 荚蒾属植物花期物候及生长对引种地年际气候波动的响应[J]. 植物学报, 2012, 47(6):645-653.

    Chen L, Shi L, Cui HX, Zhang AY, Zhang DS, Wang L, Xia F. The response of flowering phenology and growth of viburnum to interannual weather fluctuation in an introduction habitat[J]. Chinese Bulletin of Botany, 2012, 47(6):645-653.
  • Related Articles

    [1]Li Jin-Ye, Ping Jing-Yao, Cui Gui-Feng, Su Ying-Juan, Wang Ting. Effects of the broken rps2 gene cluster on evolutionary rates in Campanulaceae[J]. Plant Science Journal, 2023, 41(3): 333-342. DOI: 10.11913/PSJ.2095-0837.22231
    [2]Wang Jie, Wei Ai-Li, Shi Ying, Li Yan-Hui, Han Yu-Xin, Wang Zhong-Jie. Adaptive evolutionary analysis of hetR gene in Nostoc[J]. Plant Science Journal, 2020, 38(1): 23-31. DOI: 10.11913/PSJ.2095-0837.2020.10023
    [3]Ping Jing-Yao, Zhu Ming, Su Ying-Juan, Wang Ting. Molecular evolution of chloroplast gene rps12 in ferns[J]. Plant Science Journal, 2020, 38(1): 1-9. DOI: 10.11913/PSJ.2095-0837.2020.10001
    [4]Liang Ying-Yi, Pang Xue-Qun, Wang Ting. Mechanism and evolution of fruit type diversity[J]. Plant Science Journal, 2017, 35(6): 912-924. DOI: 10.11913/PSJ.2095-0837.2017.60912
    [5]Wu Xiao-Ping, Sen Lin, Chen Nan, Zhang Xiao, Ma Zhao-Xia, Zhang Qin-Yu. Study on the molecular evolution of the psaA gene from ferns[J]. Plant Science Journal, 2017, 35(2): 177-185. DOI: 10.11913/PSJ.2095-0837.2017.20177
    [6]XU Ke, WANG Bo, SU Ying-Juan, GAO Lei, WANG Ting. Molecular Evolution of psbD Gene in Ferns:Selection Pressure and Co-evolutionary Analysis[J]. Plant Science Journal, 2013, 31(5): 429-438. DOI: 10.3724/SP.J.1142.2013.50429
    [7]ZHOU Yuan, WANG Bo, GAO Lei, WANG Ting. Adaptive Evolution and Coevolution of the rbcL Gene in Xeric Pteridaceae Ferns[J]. Plant Science Journal, 2011, 1(4): 409-416.
    [8]Wang Chongyun, Dang Chenglin. PLANT MATING SYSTEM AND ITS EVOLUTIONARY MECHANISM IN RELATION TO POPULATION ADAPTATION[J]. Plant Science Journal, 1999, 17(2): 163-172.
    [9]Xu Naiyu. THE TAXONOMY,ORIGIN AND EVOLUTION OF WHEAT[J]. Plant Science Journal, 1988, 6(2): 187-194.
    [10]Wang Jinwu, Li Maoxue, Li Lixia. STUDIES ON THE CYTOTAXONOMY OF POLYGONATUM Ⅰ.Karyotypes and evolution of eight species of Polygonatum in China[J]. Plant Science Journal, 1987, 5(1): 1-10.
  • Cited by

    Periodical cited type(7)

    1. 席欧彦,王晨日,古丽奴尔·吐拉西,胡红英. 伊犁河谷野果林传粉昆虫物种多样性及访花行为特征. 新疆农业科学. 2024(01): 190-198 .
    2. 管岳,申文靖,陆彪,王妍欣,阿克居力得孜·努尔改里得,周龙. 塔额盆地野果林不同居群野扁桃土壤种子库及幼苗更新研究. 西北植物学报. 2024(06): 961-967 .
    3. 热依汉古丽·夏迪,杨蕾,如马南木·尼合买提,贾贤德,巫利梅,吕海英. 西天山野果林准噶尔山楂土壤种子库海拔梯度分布格局. 植物科学学报. 2023(02): 172-182 . 本站查看
    4. 李波,赵阳,刘婷,陈学龙,高本强,曹秀文. 洮河上游紫果云杉群落土壤种子库特征及其与地上植被的关系. 西北植物学报. 2022(04): 705-714 .
    5. 冯琳骄,褚佳瑶,孟雨欣,周龙,陆彪. 不同居群天山樱桃土壤种子库与幼苗更新特征. 中南林业科技大学学报. 2022(12): 91-97 .
    6. 尚志福,郑友琪,张济显,位竹君,张北方,张莹. 金花小檗种子总黄酮的优化提取及抗氧化活性. 特产研究. 2021(05): 75-80 .
    7. 陈本学,李雁冰,范少辉,刘广路,申景昕. 海南甘什岭白藤土壤种子库特征及幼苗更新能力. 生态学杂志. 2020(04): 1091-1100 .

    Other cited types(4)

Catalog

    Article views (630) PDF downloads (853) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return