Advance Search
Xiong Zhe-Ming, Gao Yi-Bo, Ren Hui-Ying, Xu Bo, Wu Si-Wan, Peng Yuan, Sen Lin. Analysis on the phylogenetic classification and molecular evolution of the matK gene in 40 fern species[J]. Plant Science Journal, 2020, 38(1): 10-22. DOI: 10.11913/PSJ.2095-0837.2020.10010
Citation: Xiong Zhe-Ming, Gao Yi-Bo, Ren Hui-Ying, Xu Bo, Wu Si-Wan, Peng Yuan, Sen Lin. Analysis on the phylogenetic classification and molecular evolution of the matK gene in 40 fern species[J]. Plant Science Journal, 2020, 38(1): 10-22. DOI: 10.11913/PSJ.2095-0837.2020.10010

Analysis on the phylogenetic classification and molecular evolution of the matK gene in 40 fern species

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31500260, 81574037) and Youth Talent Project of Hubei University of Chinese Medicine (2016ZZX015).

More Information
  • Received Date: June 09, 2019
  • Revised Date: July 25, 2019
  • Available Online: October 31, 2022
  • Published Date: February 27, 2020
  • The matK gene is the only group Ⅱ intron maturase encoded in the chloroplast genome. It is the potentiality left untested that applying the matK gene as the molecular marker reconstructs credible fern phylogenetic trees under estimated timescale. Using the relaxed molecular clock model, positive selection model, and co-evolutionary analysis, we attempted to unravel the evolutionary pattern of the matK gene. Results showed that matK had certain application value in the phylogenetic study of ferns, and the reliability of the phylogenetic tree was significantly enhanced when combined with rbcL and psaA. The study also indicated a few positively selected amino-acid sites in the MATK protein. Multiple pairs of amino-acid sites in the MATK protein evolved to form a co-evolutionary network. The modification of the MATK protein by site adaptation and the protein intra-network may be important factors that benefited the adaptive evolution of ferns under the change in photosynthetic environment after the rise of angiosperms.
  • [1]
    李春香, 王怿, 孙晓燕. 蕨类植物的起源演化:对"古老"类群的重新审视[J].生命科学, 2007, 19(2):245-249.

    Li CX, Wang Y, Sun XY. Origin and evolution of Pteridophytes:new insights to "ancient" lineage[J]. Chinese Bulletin of Life Sciences, 2007, 19(2):245-249.
    [2]
    刘红梅, 王丽, 张宪春, 曾辉. 石松类和蕨类植物研究进展:兼论国产类群的科级分类系统[J]. 植物分类学报, 2008, 46(6):808-829.

    Liu HM, Wang L, Zhang XC, Zeng H. Advances in the studies of lycophytes and monilophytes with reference to systematic arrangement of families distributed in China[J]. Journal of Systematics and Evolution, 2008, 46(6):808-829.
    [3]
    张宪春, 卫然, 刘红梅, 何丽娟, 王丽, 张钢民. 中国现代石松类和蕨类的系统发育与分类系统[J]. 植物学报, 2013, 48(2):119-137.

    Zhang XC, Wei R, Liu HM, He LJ, Wang L, Zhang GM. Phylogeny and classification of the extant lycophytes and ferns from China[J]. Chinese Bulletin of Botany, 2013, 48(2):119-137.
    [4]
    Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PG. A classification for extant ferns[J]. Taxon, 2006, 55(3):705-731.
    [5]
    Crane PR, Friis EM, Pedersen KR. The origin and early diversification of angiosperms[J]. Nature, 1995, 374(6517):27-33.
    [6]
    Schuettpelz E, Pryer KM. Evidence for a Cenozoic radiation of ferns in an angiosperm-dominated canopy[J]. Proc Natl Acad Sci USA, 2009, 106(27):11200-11205.
    [7]
    许可, 王博, 苏应娟, 高磊, 王艇. 蕨类植物psbD基因的适应性进化和共进化分析[J]. 植物科学学报, 2013, 31(5):429-438.

    Xu K, Wang B, Su YJ, Gao L, Wang T. Molecular evolution of psbD gene in ferns:selection pressure and co-evolutionary analysis[J]. Plant Science Journal, 2013, 31(5):429-438.
    [8]
    森林, 苏应娟, 张冰, 王艇. 凤尾蕨科植物rbcL基因的适应性进化分析[J]. 热带亚热带植物学报, 2010, 18(1):1-8.

    Sen L, Su YJ, Zhang B, Wang T. Adaptive evolution of the rbcL gene in Pteridaceous ferns[J]. Journal of Tropical and Subtropical Botany, 2010, 18(1):1-8.
    [9]
    周媛, 王博, 高磊, 王艇. 凤尾蕨科旱生蕨类rbcL基因的适应性进化和共进化分析[J]. 植物科学学报, 2011, 29(4):409-416.

    Zhou Y, Wang B, Gao L, Wang T. Adaptive evolution and coevolution of the rbcL gene in xeric Pteridaceae ferns[J]. Plant Science Journal, 2011, 29(4):409-416.
    [10]
    Sen L, Fares M A, Su Y, Wang T. Molecular evolution of psbA gene in ferns:unraveling selective pressure and co-evolutionary pattern[J]. BMC Evol Biol, 2012, 12(1):145-145.
    [11]
    吴筱娉, 森林, 陈楠, 张潇, 马朝霞, 张钦宇. 蕨类植物psaA基因的分子进化研究[J]. 植物科学学报, 2017, 35(2):177-185.

    Wu XP, Sen L, Chen N, Zhang X, Ma ZX, Zhang QY. Study on the molecular evolution of the psaA gene from ferns[J]. Plant Science Journal, 2017, 35(2):177-185.
    [12]
    Sen L, Fares MA, Liang B, Gao L, Wang B, et al. Molecular evolution of rbcL in three gymnosperm families:identifying adaptive and coevolutionary patterns[J]. Biol Direct, 2011, 6(1):1-29.
    [13]
    森林, 余坤, 胡志刚, 汪文杰, 徐雷, 等. 裸子植物psbA基因分子进化式样的研究[J]. 热带亚热带植物学报, 2016, 24(2):151-159.

    Sen L, Yu K, Hu ZG, Wang WJ, Xu L, et al. Molecular evolutionary patterns of the psbA gene in gymnosperms[J]. Journal of Tropical and Subtropical Botany, 2016, 24(2):151-159.
    [14]
    Vogel J, Borner T, Hess WR. Comparative analysis of splicing of the complete set of chloroplast groupⅡ introns in three higher plant mutants[J]. Nucleic Acids Res, 1999, 27(19):3866-3874.
    [15]
    Kuo LY, Li FW, Chiou WL, Wang CN. First insights into fern matK phylogeny[J]. Mol Phylogenet Evol, 2011, 59(3):556-566.
    [16]
    Wei R, Yan YH, Harris AJ, Kang J, Shen H, et al. Plastid phylogenomics resolve deep relationships among EupolypodⅡ ferns with rapid radiation and rate heterogeneity[J]. Genome Biol Evol, 2017, 9(6):1646-1657.
    [17]
    Li FW, Kuo LY, Rothfels CJ, Ebihara A, Chiou WL, et al. rbcL and matK earn two thumbs up as the core DNA barcode for ferns[J]. PLoS One, 2011, 6(10):e26597.
    [18]
    Shao YZ, Wei R, Zhang XC, Xiang QP. Molecular phylo-geny of the cliff ferns (Woodsiaceae:Polypodiales) with a proposed infrageneric classification[J]. PLoS One, 2015, 10(9):e0136318.
    [19]
    Chao YS, Mustapeng AMA, Chen CW, Chiou WL. Pteris borneensis (Pteridaceae), a new species from Borneo, with re-circumscription of Pteris decrescens and Pteris Parviloba[J]. Syst Bot, 2017, 42(4):724-732.
    [20]
    Liu ZY, Wei HJ, Shang H, Wei R, Wang P, et al. Dipla-zium yinchanianum (Athyriaceae):a new fern from the border between China and Vietnam[J]. Phytotaxa, 2018, 343(2):139-148.
    [21]
    李艳, 江玉梅, 鲁顺保, 彭九生, 朱笃. 突托腊梅ISSR引物反应条件的优化与筛选[J]. 植物科学学报, 2008, 26(3):245-250.

    Li Y, Jiang YM, Lu SB, Peng JS, Zhu D. Optimization of experiment conditions and primer screening with ISSR markers for Chimonanthus grammatus[J]. Plant Science Journal, 2008, 26(3):245-250.
    [22]
    Kumar S, Stecher G, Tamura K. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7):1870-1874.
    [23]
    Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2:more models, new heuristics and parallel computing[J]. Nat Methods, 2012, 9(8):772-772.
    [24]
    Posada D. jModelTest:phylogenetic model averaging[J]. Mol Biol Evol, 2008, 25(7):1253-1256.
    [25]
    Santorum JM, Darriba D, Taboada GL, Posada D. jModelTest.org:selection of nucleotide substitution models on the cloud[J]. Bioinformatics, 2014, 30(9):1310-1311.
    [26]
    Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7[J]. Mol Biol Evol, 2012, 29(8):1969-1973.
    [27]
    Xu B, Yang Z. PamlX:A graphical user interface for PAML[J]. Mol Biol Evol, 2013, 30(12):2723-2724.
    [28]
    Hao DC, Chen SL, Xiao PG. Molecular evolution and positive Darwinian selection of the chloroplast maturase matK[J]. J Plant Res, 2010, 123(2):241-247.
    [29]
    Hao DC, Mu J, Chen SL, Xiao PG. Physicochemical evolution and positive selection of the gymnosperm matK proteins[J]. J Genet, 2010, 89(1):81-89.
    [30]
    王博, 高磊, 苏应娟, 王艇. 基于叶绿体基因组全序列分析真叶植物叶绿体基因的适应性进化[J]. 中山大学学报(自然科学版), 2012, 51(3):108-113.

    Wang B, Gao L, Su YJ, Wang T. Adaptive evolutionary analysis of chloroplast gene in Euphyllophytes based on complete chloroplast genome sequences[J]. Acta Scientiarum Naturalium Universitatis Sunyateni(Natural Science Edition), 2012, 51(3):108-113.
    [31]
    Barthet MM, Hilu KW. Evaluating evolutionary constraint on the rapidly evolving gene matK using protein composition[J]. J Mol Evol, 2008, 66(2):85-97.
  • Related Articles

    [1]Li Jin-Ye, Ping Jing-Yao, Cui Gui-Feng, Su Ying-Juan, Wang Ting. Effects of the broken rps2 gene cluster on evolutionary rates in Campanulaceae[J]. Plant Science Journal, 2023, 41(3): 333-342. DOI: 10.11913/PSJ.2095-0837.22231
    [2]Wang Jie, Wei Ai-Li, Shi Ying, Li Yan-Hui, Han Yu-Xin, Wang Zhong-Jie. Adaptive evolutionary analysis of hetR gene in Nostoc[J]. Plant Science Journal, 2020, 38(1): 23-31. DOI: 10.11913/PSJ.2095-0837.2020.10023
    [3]Ping Jing-Yao, Zhu Ming, Su Ying-Juan, Wang Ting. Molecular evolution of chloroplast gene rps12 in ferns[J]. Plant Science Journal, 2020, 38(1): 1-9. DOI: 10.11913/PSJ.2095-0837.2020.10001
    [4]Liang Ying-Yi, Pang Xue-Qun, Wang Ting. Mechanism and evolution of fruit type diversity[J]. Plant Science Journal, 2017, 35(6): 912-924. DOI: 10.11913/PSJ.2095-0837.2017.60912
    [5]Wu Xiao-Ping, Sen Lin, Chen Nan, Zhang Xiao, Ma Zhao-Xia, Zhang Qin-Yu. Study on the molecular evolution of the psaA gene from ferns[J]. Plant Science Journal, 2017, 35(2): 177-185. DOI: 10.11913/PSJ.2095-0837.2017.20177
    [6]XU Ke, WANG Bo, SU Ying-Juan, GAO Lei, WANG Ting. Molecular Evolution of psbD Gene in Ferns:Selection Pressure and Co-evolutionary Analysis[J]. Plant Science Journal, 2013, 31(5): 429-438. DOI: 10.3724/SP.J.1142.2013.50429
    [7]ZHOU Yuan, WANG Bo, GAO Lei, WANG Ting. Adaptive Evolution and Coevolution of the rbcL Gene in Xeric Pteridaceae Ferns[J]. Plant Science Journal, 2011, 1(4): 409-416.
    [8]Wang Chongyun, Dang Chenglin. PLANT MATING SYSTEM AND ITS EVOLUTIONARY MECHANISM IN RELATION TO POPULATION ADAPTATION[J]. Plant Science Journal, 1999, 17(2): 163-172.
    [9]Xu Naiyu. THE TAXONOMY,ORIGIN AND EVOLUTION OF WHEAT[J]. Plant Science Journal, 1988, 6(2): 187-194.
    [10]Wang Jinwu, Li Maoxue, Li Lixia. STUDIES ON THE CYTOTAXONOMY OF POLYGONATUM Ⅰ.Karyotypes and evolution of eight species of Polygonatum in China[J]. Plant Science Journal, 1987, 5(1): 1-10.
  • Cited by

    Periodical cited type(7)

    1. 席欧彦,王晨日,古丽奴尔·吐拉西,胡红英. 伊犁河谷野果林传粉昆虫物种多样性及访花行为特征. 新疆农业科学. 2024(01): 190-198 .
    2. 管岳,申文靖,陆彪,王妍欣,阿克居力得孜·努尔改里得,周龙. 塔额盆地野果林不同居群野扁桃土壤种子库及幼苗更新研究. 西北植物学报. 2024(06): 961-967 .
    3. 热依汉古丽·夏迪,杨蕾,如马南木·尼合买提,贾贤德,巫利梅,吕海英. 西天山野果林准噶尔山楂土壤种子库海拔梯度分布格局. 植物科学学报. 2023(02): 172-182 . 本站查看
    4. 李波,赵阳,刘婷,陈学龙,高本强,曹秀文. 洮河上游紫果云杉群落土壤种子库特征及其与地上植被的关系. 西北植物学报. 2022(04): 705-714 .
    5. 冯琳骄,褚佳瑶,孟雨欣,周龙,陆彪. 不同居群天山樱桃土壤种子库与幼苗更新特征. 中南林业科技大学学报. 2022(12): 91-97 .
    6. 尚志福,郑友琪,张济显,位竹君,张北方,张莹. 金花小檗种子总黄酮的优化提取及抗氧化活性. 特产研究. 2021(05): 75-80 .
    7. 陈本学,李雁冰,范少辉,刘广路,申景昕. 海南甘什岭白藤土壤种子库特征及幼苗更新能力. 生态学杂志. 2020(04): 1091-1100 .

    Other cited types(4)

Catalog

    Article views (1086) PDF downloads (1129) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return