Advance Search
CHEN Zhen-Xi, WANG Peng, GAI Jiang-Tao, WANG Qi-Zhi. Identification and Sequence Analysis of DGAT2s in Four Plants under the Scenario of Gene Family[J]. Plant Science Journal, 2015, 33(2): 186-194. DOI: 10.11913/PSJ.2095-0837.2015.20186
Citation: CHEN Zhen-Xi, WANG Peng, GAI Jiang-Tao, WANG Qi-Zhi. Identification and Sequence Analysis of DGAT2s in Four Plants under the Scenario of Gene Family[J]. Plant Science Journal, 2015, 33(2): 186-194. DOI: 10.11913/PSJ.2095-0837.2015.20186

Identification and Sequence Analysis of DGAT2s in Four Plants under the Scenario of Gene Family

More Information
  • Received Date: June 16, 2014
  • Available Online: October 31, 2022
  • Published Date: April 27, 2015
  • DGAT2, a rate-limiting enzyme of the TAG biosynthesis pathway, was coded by the acyltransferase supergene family. Genome-wide analysis revealed 73 acyltransferase supergene family members and five DGAT2s in the genomes of Ricinus communis L., Arabidopsis thaliana Heynh., Populus trichocarpa Torr. & A. Gray. and Manihot esculenta Crantz. based on the whole genome database Phytozome. Analysis of the physical and chemical properties and transmembrane domains indicated that DGAT2s were hydrophobic transmembrane proteins, and DGAT2s of M.esculenta differed from the others due to their single transmembrane domain and wide chloroplast membrane distribution. We concluded that functional differentiation of M.esculenta DGAT2s may exist and DGAT2s may be involved in the anti-stress pathways in M.esculenta.
  • [1]
    Karantonis HC, Nomikos T, Demopoulos CA. Triacylglycerol metabolism[J]. Curr Drug Targets, 2009, 10(4): 302-319.
    [2]
    Dolinsky VW, Gilham D, Alam M, Vance DE, Lehner R. Triacylglycerol hydrolase: role in intracellular lipid metabolism[J]. Cell Mol Life, 2004, 61(13): 1633-1651.
    [3]
    Zhang M, Fan JL, Taylor DC, Ohlrogge JB. DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development[J]. Plant Cell, 2009, 21(12): 3885-3901.
    [4]
    Lock YY, Snyder CL, Zhu WM, Siloto RM, Weselake RJ, Shah S. Antisense suppression of type 1 diacylglycerol acyltransferase adversely affects plant development in Brassica napus[J]. Physiol Plantarum, 2009, 137(1): 61-71.
    [5]
    Liu Q, Siloto RM, Lehner R, Stone SJ, Weselake RJ. Acyl-CoA: diacylglycerol acyltransferase: molecular biology, biochemistry and biotechnology[J]. Prog Lipid Res, 2012, 51(4): 350-377.
    [6]
    Agarwal AK, Garg A. Congenital generalized lipodystrophy: significance of triglyceride biosynthetic pathways[J]. Trends Endocrin Met, 2003, 14(5): 214-221.
    [7]
    Pillai MG, Certik M, Nakahara T, Kamisaka Y. Characterization of triacylglycerol biosynthesis in subcellular fractions of an oleaginous fungus, Mortierella ramanniana var. angulispora[J]. Mol Cell Biol L, 1998, 1393(1): 128-136.
    [8]
    Coleman RA, Lee DP. Enzymes of triacylglycerol synthesis and their regulation[J]. Prog Lipid Res, 2004, 43(2): 134-176.
    [9]
    Saha S, Enugutti B, Rajakumari S, Rajasekharan R. Cytosolic triacylglycerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase[J]. Plant Physiol, 2006, 141(4): 1533-1543.
    [10]
    Yen CL, Stone SJ, Koilwad S, Harris C, Farese JR. DGAT enzymes and triacylglycerol biosynthesis[J]. J Lipid Res, 2008, 49: 2283-2301.
    [11]
    Matsuda S, Inoue T, Lee HC, Kono N, Tanaka F, Gengyo-Ando K, Mitani S, Arai H. Member of the membrane-bound O-acyltransferase (MBOAT) family encodes a lysophospholipid acyltransferase with broad substrate specificity[J]. Genes Cells, 2008, 13(8): 879-888.
    [12]
    Wang P, Wang Z, Dou Y, Zhang X, Wang M, Tian X. Genome-wide identification and analysis of membrane-bound O-acyltransferase (MBOAT) gene family in plants[J]. Planta, 2013, 238(5): 907-922.
    [13]
    Winter A, Van Eckeveld M, Bininda-Emonds ORP, Habermann FA, Fries R. Genomic organization of the DGAT2/MOGAT gene family in cattle (Bos taurus) and other mammals[J]. Cytogenetic Genome Res, 2004, 102(1-4): 42-47.
    [14]
    Li RZ, Yu KS, Hildebrand DF. DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants[J]. Lipids, 2010, 45(2): 145-157.
    [15]
    Shockey JM, Gidda SK, Chapital DC, Kuan JC, Dhanoa PK, Bland JM, Rothstein SJ, Mullen RT, Dyer JM. Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum[J]. Plant Cell, 2006, 18(9): 2294-2313.
    [16]
    Kroon J, Wei WX, Simon WJ, Siabas AR. Identification and functional expression of a type 2 Acyl-CoA: diacylglycerol acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals[J]. Phytochemistry, 2006, 67(23): 2541-2549.
    [17]
    Li RZ, Yu KS, Hatanaka T, Hildebrand DF. Vernonia DGATs increase accumulation of epoxy fatty acids in oil[J]. Plant Biotechnol J, 2010, 8(2): 184-195.
    [18]
    Zhou XR, Shrestha P, Yin F, Petrie JR, Singh SP. AtDGAT2 is a functional Acyl-CoA: diacylglycerol acyltransferase and displays different Acyl-CoA substrate preferences than AtDGAT1[J]. Febs Lett, 2013, 587(15): 2371-2376.
    [19]
    Cao HP, Shockey JM, Klasson KT, Chapital DC, Mason CB, Scheffler BE. Developmental regulation of diacylglycerol acyltransferase family gene expression in tung tree tissues[J]. Plos One, 2013, 8(10): e76946.
    [20]
    Rani SH, Saha S, Rajasekharan R. A soluble diacylglycerol acyltransferase is involved in triacylglycerol biosynthesis in the oleaginous yeast Rhodotorula glutinis[J].Microbiology, 2013, 159(Pt 1): 155-166.
    [21]
    Do CB, Mahabhashyam MSP, Brudno M, Batzoglou S. Probcons: probabilistic consistency-based multiple sequence alignment[J]. Genome Res, 2005, 15(2): 330-340.
    [22]
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0[J]. Mol Biol Evol, 2013, 30(12): 2725-2729.
    [23]
    Ronquist F, Huelsenbeck JP. Mrbayes 3: bayesian phylogenetic inference under mixed models[J]. Bioinformatics, 2003, 19(12): 1572-1574.
    [24]
    Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. Expasy: the proteomics server for in-depth protein knowledge and analysis[J]. Nucleic Acids Res, 2003, 31(13): 3784-3788.
    [25]
    Stone SJ, Levin MC, Farese RV. Membrane topolo-gy and identification of key functional amino acid residues of murine Acyl-CoA: diacylglycerol acyltransferase-2[J]. J Biol Chem, 2006, 281(52): 40273-40282.
    [26]
    Aymé L, Baud S, Dubreucq B, Joffre F, Chardot T. Function and localization of the Arabidopsis thaliana diacylglycerol acyltransferase DGAT2 expressed in yeast[J]. Plos One, 2014, 9(3): 1-9.
    [27]
    Liu Q, Siloto RM, Snyder CL, Weselake RJ. Functional and topological analysis of yeast acyl-CoA: diacylglycerol acyltransferase 2, an endoplasmic reticulum enzyme essential for triacylglycerol biosynthesis[J]. J Biol Chem, 2011, 286: 13115-13126.
    [28]
    Martin BA, Wilson RF. Subcellular localization of triacylglycerol synthesis in spinach leaves[J]. Lipi-ds, 1984, 19(2): 117-121.
    [29]
    Sakaki T, Kondo N, Yamada M. Pathway for the synthesis of triacylglycerols from monogalactosyldiacylglycerols in ozone-fumigated spinach leaves[J]. Plant Physiol, 1990, 94(2): 773-780.
    [30]
    Yang ZL, Ohlrogge JB. Turnover of fatty acids during natural senescence of Arabidopsis, Brachypodium, and switchgrass and in Arabidopsis β-oxidation mutants[J]. Plant Physiol, 2009, 150(4): 1981-1989.
  • Related Articles

    [1]Wang Jun-Jie, Cheng Yue-Hong, Ding Shi-Xiong, Wang Yan, Peng Shuai, Yang Jia-Xin, Sun Hong-Ou, Leng Zhi-Cheng, Hu Guang-Wan. Six new records of Orchidaceae in Sichuan Province[J]. Plant Science Journal, 2021, 39(3): 223-228. DOI: 10.11913/PSJ.2095-0837.2021.30223
    [2]DENG Wei-Qiong, SUN Rong, LI Xiu-Ming, LU Ding, YANG Quan, LU Ke-Yu. Flora Study of Riparian Plants on the Mountain River Banks of the Jiulongjiang River Headstream[J]. Plant Science Journal, 2013, 31(5): 467-476. DOI: 10.3724/SP.J.1142.2013.50467
    [3]WU Ming-Kai, ZHANG Xiao-Ping, CAO Tong. Moss Flora of Huangshan Mountain in Anhui Province,China[J]. Plant Science Journal, 2010, 28(3): 365-375. DOI: 10.3724/SP.J.1142.2010.30365
    [4]ZHENG Ji-Qing, CHEN Tong-Tong, LIU Ying, TANG Gui-Ying, LI Fa-Zeng. Study on the Flora of Culai Mountain in Shandong Province[J]. Plant Science Journal, 2006, 24(1): 27-30.
    [5]WANG Shi-Quan, JIA Ze-Feng, LI Fa-Zeng . Studies on Flora of Laoshan Mountain in Shandong Province[J]. Plant Science Journal, 2001, 19(6): 467-474.
    [6]Song Baohua, Li Fazeng. STUDIES ON FLORA OF KUNYU MOUNTAIN IN SHANDONG PROVINCE[J]. Plant Science Journal, 1999, 17(3): 220-226.
    [7]Zhao Zuocheng, Yang Yichuan, Yang Fuming, Chenglin, Borje Exstam. A STUDY ON THE FLORA OF PEATERY SWAMP PLANTS IN HONGYUAN,SICHUAN,CHINA[J]. Plant Science Journal, 1995, 13(1): 30-36.
    [8]Zang Dekui, Liu Yufeng, Qi Aishou, Du Mingyun. STUDIES ON THE SEED PLANTS FLORA OF TALSHAN MOUNTAIN IN SHANDONG PROVINCE[J]. Plant Science Journal, 1994, 12(3): 233-239.
    [9]Liu Bin. A STUDY ON THE FLORA OF TUOJIAN MOUNTAIN AREA OF THE DABIE MOUNTAINS, ANHUI PROVINCE[J]. Plant Science Journal, 1991, 9(3): 239-246.
    [10]Liu Dengyi. A PRELIMINARY EXPLORATION OF THE FLORA OF THE LIUGUJIAN MOUNTAINOUS REGIONS ON THE BOUNDARY BETWEEN ANHUI AND JIANGXI[J]. Plant Science Journal, 1988, 6(4): 365-370.
  • Cited by

    Periodical cited type(8)

    1. 韦海航,胡力文,李进华,蔡诚,夏家朗,田红灯,覃振凯,刘秀. 红树植物移植后生理适应性研究. 广西林业科学. 2025(01): 73-77 .
    2. 郭璐瑶,苗灵凤,李大东,向丽珊,杨帆. 施氮和增温对降香黄檀幼苗生长发育和生理特征的影响. 植物科学学报. 2022(02): 259-268 . 本站查看
    3. 刘铎,白爽,齐学斌,宁东峰,梁志杰,郭魏,李平. 小麦百农矮抗58幼苗对Na_2SO_4胁迫响应及阈值鉴定. 福建农业学报. 2021(01): 9-16 .
    4. 于霞霞,郭晔红,杜弢,贾存勤,李欠,马兴东,马旭东. 肉苁蓉寄生对梭梭光合特性的影响. 中成药. 2021(09): 2570-2576 .
    5. 徐倩,郭尚敬,魏慧恬,苏艳艳,马青平,冀芦沙. 外源BABA对NaCl胁迫下二月兰幼苗生长和生理特性的影响. 北方园艺. 2020(12): 75-81 .
    6. 马鹏图,苏世平,李毅,种培芳,后有丽,魏斌. 外源脯氨酸对自然干旱下白刺叶片渗透调节与抗氧化酶活性的影响. 甘肃农业大学学报. 2020(04): 121-127+136 .
    7. 杨俊鸾. NaCl胁迫对银杏叶绿素和保护酶活性的影响. 山东林业科技. 2019(03): 49-52 .
    8. 郭晓霄,王小华,侯爱民. 不同氮磷钾施用量对连翘生理特性的影响. 山东林业科技. 2019(04): 71-74 .

    Other cited types(11)

Catalog

    Article views (1163) PDF downloads (1780) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return