Citation: | Ping Jing-Yao, Zhu Ming, Su Ying-Juan, Wang Ting. Molecular evolution of chloroplast gene rps12 in ferns[J]. Plant Science Journal, 2020, 38(1): 1-9. DOI: 10.11913/PSJ.2095-0837.2020.10001 |
[1] |
王博. 真叶植物叶绿体基因的分子进化及卷柏属rbcS基因家族的进化研究[D]. 北京:中国科学院大学, 2015:1-67.
|
[2] |
Harris EH, Boynton JE, Gillham NW. Chloroplast ribosomes and protein synthesis[J]. Microbiol Rev, 1994, 58(4):700-754.
|
[3] |
Zaita N, Torazawa K,Shinozaki K,Sugiura M. Trans splicing in vivo:joining of transcripts from the ‘divided’ gene for ribosomal protein S12 in the chloroplasts[J]. Febs Lett, 1987, 210(2):153-156.
|
[4] |
Maier RM, Neckermann K, Igloi GL, Kossel H. Complete sequence of the maize chloroplast genome:gene content, hotspots of divergence and fine tuning of genetic information by transcript editing[J]. J Mol Biol, 1995, 251(5):614-628.
|
[5] |
Wolfe KH, Li WH, Sharp PM. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs[J]. Proc Natl Acad Sci USA, 1987, 84(24):9054-9058.
|
[6] |
Wu CS, Chaw SM. Evolutionary stasis in Cycad plastomes and the first case of plastome GC-biased gene conversion[J]. Genome Biol Evol, 2015, 7(7):2000-2009.
|
[7] |
Perry AS, Wolfe KH. Nucleotide substitution rates in legume chloroplast DNA depend on the presence of the inverted repeat[J]. J Mol Evol, 2002, 55(5):501-508.
|
[8] |
Zhu A, Guo W, Gupta S, Fan WS, Mower JP. Evolutio-nary dynamics of the plastid inverted repeat:the effects of expansion, contraction, and loss on substitution rates[J]. New Phytol, 2016, 209(4):1747-1756.
|
[9] |
Li FW, Kuo LY, Pryer KM, Rothfels CJ. Genes translocated into the plastid inverted repeat show decelerated substitution rates and elevated GC content[J].Genome Biol Evol, 2016, 8(8):2452-2458.
|
[10] |
Lin CP, Wu CS, Huang YY, Chaw SM. The complete chloroplast genome of Ginkgo biloba reveals the mechanism of inverted repeat contraction[J]. Genome Biol Evol, 2012, 4(3):374-381.
|
[11] |
苏应娟, 王艇. 水龙骨科附生蕨类Rubisco大亚基的适应性进化:正向选择位点的鉴定[J]. 中山大学学报(自然科学版), 2008, 47(5):74-80.
Su YJ, Wang T. Adaptive evolution of large subunits of Rubisco solanopteris of the polypodiaceae:identification of positive selection sites[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2008, 47(5):74-80.
|
[12] |
Hao DC, Chen SL, Xiao PG. Molecular evolution and positive Darwinian selection of the chloroplast maturase matK[J]. J Plant Res, 2010, 123(2):241-247.
|
[13] |
张丽君, 陈洁, 王艇. 蕨类植物叶绿体rps4基因的适应性进化分析[J]. 植物研究, 2010, 30(1):42-50.
Zhang LJ, Chen J, Wang T. Adaptive evolution in the chloroplast gene rps4 in ferns[J]. Bulletin of Botanical Research, 2010, 30(1):42-50.
|
[14] |
Liu SS, Ping JY, Wang Z, Wang T, Su YJ. Complete chloroplast genome of the tree fern Alsophila podophylla (Cyatheaceae)[J]. Mitochondrial DNA Part B, 2018, 3(1):48-49.
|
[15] |
Kearse M, Moir R, Wilson A. Geneious Basic:an integra-ted and extendable desktop software platform for the organization and analysis of sequence data[J]. Bioinformatics, 2012, 28(12):1647-1649.
|
[16] |
Kumar S, Stecher G, Tamura K. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7):1870-1874.
|
[17] |
Hollingsworth PM, Graham SW, Little DP. Choosing and using a plant DNA barcode[J]. PLoS One, 2011, 6(5):e19254.
|
[18] |
Li FW, Kuo LY, Rothfels CJ,Ebihara A, Chiou WL, et al.RbcL and matK earn two thumbs up as the core DNA barcode for ferns[J]. PLoS One, 2011, 6(10):e26597.
|
[19] |
PPGⅠ. A community-derived classification for extant lycophytes and ferns[J]. J Syst Evol, 2016, 54(6):563-603.
|
[20] |
Posada D, Crandall KA. MODELTEST:Testing the model of DNA substitution[J]. Bioinformatics, 1998, 14(9):817-818.
|
[21] |
Swofford DL. PAUP*:Phylogenetic Analysis Using Parsimony(and other methods):Version 4.0b10[M]. Sunderland:Sinauer Associates, 2002.
|
[22] |
Huelsenbeck JP, Ronquist F. MRBAYES:Bayesian infe-rence of phylogenetic trees[J]. Bioinformatics, 2001, 17(8):754-755.
|
[23] |
Pond SL, Frost SD, Muse SV. HyPhy:Hypothesis testing using phylogenies[J]. Bioinformatics, 2005, 21(5):676-679.
|
[24] |
Yang Z. PAML 4:Phylogenetic analysis by maximum likelihood[J]. Mol Biol Evol, 2007, 24(8):1586-1591.
|
[25] |
Zhang J, Nielsen R, Yang Z. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level[J]. Mol Biol Evol, 2005, 22(12):2472-2479.
|
[26] |
Birky CJ, Walsh JB. Biased gene conversion, copy number, and apparent mutation rate differences within chloroplast and bacterial genomes[J]. Genetics, 1992, 130(3):677-683.
|
[27] |
Khakhlova O, Bock R. Elimination of deleterious mutations in plastid genomes by gene conversion[J]. Plant J, 2006, 46(1):85-94.
|
[1] | Li Jin-Ye, Ping Jing-Yao, Cui Gui-Feng, Su Ying-Juan, Wang Ting. Effects of the broken rps2 gene cluster on evolutionary rates in Campanulaceae[J]. Plant Science Journal, 2023, 41(3): 333-342. DOI: 10.11913/PSJ.2095-0837.22231 |
[2] | Jiang Quan, Qiu Dong-Ping, Wang Zhi, Li Zuo-Zhou, Yao Xiao-Hong. Research progress on local adaptation in plants[J]. Plant Science Journal, 2021, 39(5): 559-570. DOI: 10.11913/PSJ.2095-0837.2021.50559 |
[3] | Wang Yi-Xi, Wen Yin, Liu Hui, Cao Kun-Fang. Relationship between climatic-niche evolution and species diversification in Annonaceae, a pantropical family[J]. Plant Science Journal, 2021, 39(5): 457-466. DOI: 10.11913/PSJ.2095-0837.2021.50457 |
[4] | Jin Xuan, Ling Shao-Jun, Wen Fang, Ren Ming-Xun. Biogeographical patterns and floral evolution of Oreocharis (Gesneriaceae)[J]. Plant Science Journal, 2021, 39(4): 379-388. DOI: 10.11913/PSJ.2095-0837.2021.40379 |
[5] | Wang Jie, Wei Ai-Li, Shi Ying, Li Yan-Hui, Han Yu-Xin, Wang Zhong-Jie. Adaptive evolutionary analysis of hetR gene in Nostoc[J]. Plant Science Journal, 2020, 38(1): 23-31. DOI: 10.11913/PSJ.2095-0837.2020.10023 |
[6] | Xiong Zhe-Ming, Gao Yi-Bo, Ren Hui-Ying, Xu Bo, Wu Si-Wan, Peng Yuan, Sen Lin. Analysis on the phylogenetic classification and molecular evolution of the matK gene in 40 fern species[J]. Plant Science Journal, 2020, 38(1): 10-22. DOI: 10.11913/PSJ.2095-0837.2020.10010 |
[7] | Liang Ying-Yi, Pang Xue-Qun, Wang Ting. Mechanism and evolution of fruit type diversity[J]. Plant Science Journal, 2017, 35(6): 912-924. DOI: 10.11913/PSJ.2095-0837.2017.60912 |
[8] | Wu Xiao-Ping, Sen Lin, Chen Nan, Zhang Xiao, Ma Zhao-Xia, Zhang Qin-Yu. Study on the molecular evolution of the psaA gene from ferns[J]. Plant Science Journal, 2017, 35(2): 177-185. DOI: 10.11913/PSJ.2095-0837.2017.20177 |
[9] | XU Ke, WANG Bo, SU Ying-Juan, GAO Lei, WANG Ting. Molecular Evolution of psbD Gene in Ferns:Selection Pressure and Co-evolutionary Analysis[J]. Plant Science Journal, 2013, 31(5): 429-438. DOI: 10.3724/SP.J.1142.2013.50429 |
[10] | ZHOU Yuan, WANG Bo, GAO Lei, WANG Ting. Adaptive Evolution and Coevolution of the rbcL Gene in Xeric Pteridaceae Ferns[J]. Plant Science Journal, 2011, 1(4): 409-416. |