Advance Search
Ping Jing-Yao, Zhu Ming, Su Ying-Juan, Wang Ting. Molecular evolution of chloroplast gene rps12 in ferns[J]. Plant Science Journal, 2020, 38(1): 1-9. DOI: 10.11913/PSJ.2095-0837.2020.10001
Citation: Ping Jing-Yao, Zhu Ming, Su Ying-Juan, Wang Ting. Molecular evolution of chloroplast gene rps12 in ferns[J]. Plant Science Journal, 2020, 38(1): 1-9. DOI: 10.11913/PSJ.2095-0837.2020.10001

Molecular evolution of chloroplast gene rps12 in ferns

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China (31770587).

More Information
  • Received Date: June 22, 2019
  • Revised Date: July 22, 2019
  • Available Online: October 31, 2022
  • Published Date: February 27, 2020
  • Plant chloroplast genomes consist of an inverted repeat (IR) region and two single copy (SC) regions; however, the patterns of molecular evolution in the IR and SC regions differ. The rps12 gene encodes the ribosomal small subunit S12 protein, which is composed of 5'-rps12 (exon 1) and 3'-rps12 (exon 2-3), with the 3'-rps12 protein of different species located in different genomic regions. The rps12 genes of 68 species of ferns and two species of lycophytes were studied, in the phylogenetic background, combined with the maximum likelihood method, the evolution rate and selection pressure of this gene were analyzed with HyPhy and PAML software. Results showed that exon 2-3 was located in the IR region, and its substitution rate was significantly reduced. The substitution rate of the coding sequence of rps12 was also reduced, and the GC content in the third position of the codon of rps12 was significantly increased. During the evolution of ferns, 3'-rps12 tended to be located in the IR region to maintain a low substitution rate. Among the 123 amino acid sites encoded by rps12, four positive selection sites and 116 negative selection sites were detected. Results indicated that the gene translocated into the IR region showed decelerated substitution rates, and the strong negative selection pressure indicated that the RPS12 protein was highly conserved and the function and structure of rps12 were mostly stabilized.
  • [1]
    王博. 真叶植物叶绿体基因的分子进化及卷柏属rbcS基因家族的进化研究[D]. 北京:中国科学院大学, 2015:1-67.
    [2]
    Harris EH, Boynton JE, Gillham NW. Chloroplast ribosomes and protein synthesis[J]. Microbiol Rev, 1994, 58(4):700-754.
    [3]
    Zaita N, Torazawa K,Shinozaki K,Sugiura M. Trans splicing in vivo:joining of transcripts from the ‘divided’ gene for ribosomal protein S12 in the chloroplasts[J]. Febs Lett, 1987, 210(2):153-156.
    [4]
    Maier RM, Neckermann K, Igloi GL, Kossel H. Complete sequence of the maize chloroplast genome:gene content, hotspots of divergence and fine tuning of genetic information by transcript editing[J]. J Mol Biol, 1995, 251(5):614-628.
    [5]
    Wolfe KH, Li WH, Sharp PM. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs[J]. Proc Natl Acad Sci USA, 1987, 84(24):9054-9058.
    [6]
    Wu CS, Chaw SM. Evolutionary stasis in Cycad plastomes and the first case of plastome GC-biased gene conversion[J]. Genome Biol Evol, 2015, 7(7):2000-2009.
    [7]
    Perry AS, Wolfe KH. Nucleotide substitution rates in legume chloroplast DNA depend on the presence of the inverted repeat[J]. J Mol Evol, 2002, 55(5):501-508.
    [8]
    Zhu A, Guo W, Gupta S, Fan WS, Mower JP. Evolutio-nary dynamics of the plastid inverted repeat:the effects of expansion, contraction, and loss on substitution rates[J]. New Phytol, 2016, 209(4):1747-1756.
    [9]
    Li FW, Kuo LY, Pryer KM, Rothfels CJ. Genes translocated into the plastid inverted repeat show decelerated substitution rates and elevated GC content[J].Genome Biol Evol, 2016, 8(8):2452-2458.
    [10]
    Lin CP, Wu CS, Huang YY, Chaw SM. The complete chloroplast genome of Ginkgo biloba reveals the mechanism of inverted repeat contraction[J]. Genome Biol Evol, 2012, 4(3):374-381.
    [11]
    苏应娟, 王艇. 水龙骨科附生蕨类Rubisco大亚基的适应性进化:正向选择位点的鉴定[J]. 中山大学学报(自然科学版), 2008, 47(5):74-80.

    Su YJ, Wang T. Adaptive evolution of large subunits of Rubisco solanopteris of the polypodiaceae:identification of positive selection sites[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2008, 47(5):74-80.
    [12]
    Hao DC, Chen SL, Xiao PG. Molecular evolution and positive Darwinian selection of the chloroplast maturase matK[J]. J Plant Res, 2010, 123(2):241-247.
    [13]
    张丽君, 陈洁, 王艇. 蕨类植物叶绿体rps4基因的适应性进化分析[J]. 植物研究, 2010, 30(1):42-50.

    Zhang LJ, Chen J, Wang T. Adaptive evolution in the chloroplast gene rps4 in ferns[J]. Bulletin of Botanical Research, 2010, 30(1):42-50.
    [14]
    Liu SS, Ping JY, Wang Z, Wang T, Su YJ. Complete chloroplast genome of the tree fern Alsophila podophylla (Cyatheaceae)[J]. Mitochondrial DNA Part B, 2018, 3(1):48-49.
    [15]
    Kearse M, Moir R, Wilson A. Geneious Basic:an integra-ted and extendable desktop software platform for the organization and analysis of sequence data[J]. Bioinformatics, 2012, 28(12):1647-1649.
    [16]
    Kumar S, Stecher G, Tamura K. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7):1870-1874.
    [17]
    Hollingsworth PM, Graham SW, Little DP. Choosing and using a plant DNA barcode[J]. PLoS One, 2011, 6(5):e19254.
    [18]
    Li FW, Kuo LY, Rothfels CJ,Ebihara A, Chiou WL, et al.RbcL and matK earn two thumbs up as the core DNA barcode for ferns[J]. PLoS One, 2011, 6(10):e26597.
    [19]
    PPGⅠ. A community-derived classification for extant lycophytes and ferns[J]. J Syst Evol, 2016, 54(6):563-603.
    [20]
    Posada D, Crandall KA. MODELTEST:Testing the model of DNA substitution[J]. Bioinformatics, 1998, 14(9):817-818.
    [21]
    Swofford DL. PAUP*:Phylogenetic Analysis Using Parsimony(and other methods):Version 4.0b10[M]. Sunderland:Sinauer Associates, 2002.
    [22]
    Huelsenbeck JP, Ronquist F. MRBAYES:Bayesian infe-rence of phylogenetic trees[J]. Bioinformatics, 2001, 17(8):754-755.
    [23]
    Pond SL, Frost SD, Muse SV. HyPhy:Hypothesis testing using phylogenies[J]. Bioinformatics, 2005, 21(5):676-679.
    [24]
    Yang Z. PAML 4:Phylogenetic analysis by maximum likelihood[J]. Mol Biol Evol, 2007, 24(8):1586-1591.
    [25]
    Zhang J, Nielsen R, Yang Z. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level[J]. Mol Biol Evol, 2005, 22(12):2472-2479.
    [26]
    Birky CJ, Walsh JB. Biased gene conversion, copy number, and apparent mutation rate differences within chloroplast and bacterial genomes[J]. Genetics, 1992, 130(3):677-683.
    [27]
    Khakhlova O, Bock R. Elimination of deleterious mutations in plastid genomes by gene conversion[J]. Plant J, 2006, 46(1):85-94.
  • Related Articles

    [1]Li Jin-Ye, Ping Jing-Yao, Cui Gui-Feng, Su Ying-Juan, Wang Ting. Effects of the broken rps2 gene cluster on evolutionary rates in Campanulaceae[J]. Plant Science Journal, 2023, 41(3): 333-342. DOI: 10.11913/PSJ.2095-0837.22231
    [2]Jiang Quan, Qiu Dong-Ping, Wang Zhi, Li Zuo-Zhou, Yao Xiao-Hong. Research progress on local adaptation in plants[J]. Plant Science Journal, 2021, 39(5): 559-570. DOI: 10.11913/PSJ.2095-0837.2021.50559
    [3]Wang Yi-Xi, Wen Yin, Liu Hui, Cao Kun-Fang. Relationship between climatic-niche evolution and species diversification in Annonaceae, a pantropical family[J]. Plant Science Journal, 2021, 39(5): 457-466. DOI: 10.11913/PSJ.2095-0837.2021.50457
    [4]Jin Xuan, Ling Shao-Jun, Wen Fang, Ren Ming-Xun. Biogeographical patterns and floral evolution of Oreocharis (Gesneriaceae)[J]. Plant Science Journal, 2021, 39(4): 379-388. DOI: 10.11913/PSJ.2095-0837.2021.40379
    [5]Wang Jie, Wei Ai-Li, Shi Ying, Li Yan-Hui, Han Yu-Xin, Wang Zhong-Jie. Adaptive evolutionary analysis of hetR gene in Nostoc[J]. Plant Science Journal, 2020, 38(1): 23-31. DOI: 10.11913/PSJ.2095-0837.2020.10023
    [6]Xiong Zhe-Ming, Gao Yi-Bo, Ren Hui-Ying, Xu Bo, Wu Si-Wan, Peng Yuan, Sen Lin. Analysis on the phylogenetic classification and molecular evolution of the matK gene in 40 fern species[J]. Plant Science Journal, 2020, 38(1): 10-22. DOI: 10.11913/PSJ.2095-0837.2020.10010
    [7]Liang Ying-Yi, Pang Xue-Qun, Wang Ting. Mechanism and evolution of fruit type diversity[J]. Plant Science Journal, 2017, 35(6): 912-924. DOI: 10.11913/PSJ.2095-0837.2017.60912
    [8]Wu Xiao-Ping, Sen Lin, Chen Nan, Zhang Xiao, Ma Zhao-Xia, Zhang Qin-Yu. Study on the molecular evolution of the psaA gene from ferns[J]. Plant Science Journal, 2017, 35(2): 177-185. DOI: 10.11913/PSJ.2095-0837.2017.20177
    [9]XU Ke, WANG Bo, SU Ying-Juan, GAO Lei, WANG Ting. Molecular Evolution of psbD Gene in Ferns:Selection Pressure and Co-evolutionary Analysis[J]. Plant Science Journal, 2013, 31(5): 429-438. DOI: 10.3724/SP.J.1142.2013.50429
    [10]ZHOU Yuan, WANG Bo, GAO Lei, WANG Ting. Adaptive Evolution and Coevolution of the rbcL Gene in Xeric Pteridaceae Ferns[J]. Plant Science Journal, 2011, 1(4): 409-416.
  • Cited by

    Periodical cited type(4)

    1. 任玉玲,李幸儿,梁佳林,赵爽,孙胜男,李萍. 鲜黄小檗叶绿体基因组特征及系统发育分析. 西北植物学报. 2024(10): 1616-1625 .
    2. 魏爱丽,杨谢,王捷,巩超彦,王清华,李艳晖. 念珠藻类(蓝藻)psbA基因的进化分析. 河南师范大学学报(自然科学版). 2023(01): 114-122 .
    3. 张扬,孙曙光,李晴,魏珍. 莴苣线粒体基因组密码子使用偏好性分析. 河南农业科学. 2022(10): 114-124 .
    4. 平晶耀,冯佩沛,郝静,栗锦烨,苏应娟,王艇. rps12基因在裸子植物中的分子进化式样. 科学通报. 2021(24): 3182-3202 .

    Other cited types(6)

Catalog

    Article views (1032) PDF downloads (1679) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return