Citation: | Zhang XX,Tian S,Zeng L,Chen LS,Zhang M,Liu KX,Hu JW,Liu C. Effects of litter addition from common greening tree species in northern China on organic carbon composition characteristics of urban soils[J]. Plant Science Journal,2024,42(2):140−149. DOI: 10.11913/PSJ.2095-0837.23184 |
This study aimed to establish a scientific basis for the utilization of litter from greening tree species to enhance the content and composition characteristics of urban soils. As such, litter from eight common greening tree species, including Salix babylonica L., Acer pictum subsp. mono (Maxim.) H. Ohashi, Ginkgo biloba L., Sophora japonica L. var. japonica f. pendula Hort., Pinus tabuliformis Carrière, Juniperus formosana Hayata, Platycladus orientalis (L.) Franco, and Picea asperata Mast., was collected. The litter was then mixed with the disturbed surface soil from urban areas of Yan’an City at a 2% ratio (litter/soil, dry weight) and incubated for 120 d under conditions simulating natural soil density and moisture levels. Subsequently, changes in soil organic carbon, its components, and carbon pool indices were analyzed, along with their relationships with the chemical properties of the litter. Results revealed significant increases in soil organic carbon content with the addition of most litters, except for A. pictum subsp. mono and J. formosana, as well as significantly increased stable component content from other species except A. pictum subsp. mono, G. biloba, and J. formosana, with nearly all types of litter also markedly enhancing the moderately and highly activated components. In addition, treatment with S. babylonica, P. orientalis, P. asperata, and P. tabuliformis litter significantly increased the carbon pool index of the soil, with nearly all types of litter significantly increasing the lability index and carbon pool management indices of soil, but only P. orientalis litter treatment significantly increasing the carbon recalcitrant index. Correlation analysis identified negative associations between the levels of litter N and amino acids and both the content and components of soil organic carbon, as well as positive correlations between litter total phenols, soluble sugars, and C to N, C to P, and N to P ratios with the soil content of highly/slightly activated and stable carbons. Additionally, the content of litter organic acids, P, C, terpenes, phenols, and the C to N ratio exhibited positive relationships with moderately activated carbons in soil. To enhance the content, activity, and stability of organic carbon in urban soil, P. orientalis litter may be the preferred soil amendment, followed by litter from S. babylonica, P. asperata, and P. tabuliformis.
[1] |
Kranz CN,McLaughlin RA,Johnson A,Miller G,Heitman JL. The effects of compost incorporation on soil physical properties in urban soils-a concise review[J]. J Environ Manag,2020,261:110209. doi: 10.1016/j.jenvman.2020.110209
|
[2] |
Chai LW,Huang MK,Fan H,Wang J,Jiang DL,et al. Urbanization altered regional soil organic matter quantity and quality:insight from excitation emission matrix (EEM) and parallel factor analysis (PARAFAC)[J]. Chemosphere,2019,220:249−258. doi: 10.1016/j.chemosphere.2018.12.132
|
[3] |
秦娟,许克福. 我国城市绿地土壤质量研究综述与展望[J]. 生态科学,2018,37(1):200−210.
Qin J,Xu KF. Research summary and prospect of urban green space soil quality in China[J]. Ecological Science,2018,37(1):200−210.
|
[4] |
Kuzyakov Y,Horwath WR,Dorodnikov M,Blagodatskaya E. Review and synthesis of the effects of elevated atmospheric CO2 on soil processes:no changes in pools,but increased fluxes and accelerated cycles[J]. Soil Biol Biochem,2019,128:66−78. doi: 10.1016/j.soilbio.2018.10.005
|
[5] |
张方方,岳善超,李世清. 土壤有机碳组分化学测定方法及碳指数研究进展[J]. 农业环境科学学报,2021,40(2):252−259.
Zhang FF,Yue SC,Li SQ. Chemical methods to determine soil organic carbon fractions and carbon indexes:a review[J]. Journal of Agro-Environment Science,2021,40(2):252−259.
|
[6] |
何若雪,李强,于奭,孙平安. 异养细菌作用下岩溶水体惰性有机碳变化及其环境影响因素分析[J]. 地球学报,2022,43(4):438−448. doi: 10.3975/cagsb.2022.022202
He RX,Li Q,Yu S,Sun PA. Variation of recalcitrant dissolved organic carbon in karst water under the influence of heterotrophic bacteria and its environmental controlling factors[J]. Acta Geoscientica Sinica,2022,43(4):438−448. doi: 10.3975/cagsb.2022.022202
|
[7] |
王丽洁,冯钰,周雯星,张晓曦. 不同绿化植物对城市土壤腐殖质特征的影响[J]. 森林与环境学报,2020,40(6):569−578.
Wang LJ,Feng Y,Zhou WX,Zhang XX. Effect of different greening plants on the humus characteristics of urban soil[J]. Journal of Forest and Environment,2020,40(6):569−578.
|
[8] |
Ma YN,McCormick MK,Szlavecz K,Filley TR. Controls on soil organic carbon stability and temperature sensitivity with increased aboveground litter input in deciduous forests of different forest ages[J]. Soil Biol Biochem,2019,134:90−99. doi: 10.1016/j.soilbio.2019.03.020
|
[9] |
Zhang M,Dong LG,Fei SX,Zhang JW,Jiang XM,et al. Responses of soil organic carbon mineralization and microbial communities to leaf litter addition under different soil layers[J]. Forests,2021,12(2):170. doi: 10.3390/f12020170
|
[10] |
陈子豪,焦泽彬,刘谣,徐振锋,谭波,张丽. 凋落物季节性输入对川西亚高山森林土壤活性有机碳的影响[J]. 应用与环境生物学报,2021,27(3):594−600.
Chen ZH,Jiao ZB,Liu Y,Xu ZF,Tan B,Zhang L. Influences of seasonal litter input on soil active organic carbon in subalpine forests in western Sichuan[J]. Chinese Journal of Applied & Environmental Biology,2021,27(3):594−600.
|
[11] |
Tamura M,Suseela V,Simpson M,Powell B,Tharayil N. Plant litter chemistry alters the content and composition of organic carbon associated with soil mineral and aggregate fractions in invaded ecosystems[J]. Global Change Biol,2017,23(10):4002−4018. doi: 10.1111/gcb.13751
|
[12] |
孙宝伟,杨晓东,张志浩,马文济,Arshad A,等. 浙江天童常绿阔叶林演替过程中土壤碳库与植被碳归还的关系[J]. 植物生态学报,2013,37(9):803−810.
Sun BW,Yang XD,Zhang ZH,Ma WJ,Arshad A,et al. Relationships between soil carbon pool and vegetation carbon return through succession of evergreen broad-leaved forests in Tiantong region,Zhejiang Province,Eastern China[J]. Chinese Journal of Plant Ecology,2013,37(9):803−810.
|
[13] |
Xu YH,Fan JL,Ding WX,Gunina A,Chen ZM,et al. Characterization of organic carbon in decomposing litter exposed to nitrogen and sulfur additions:links to microbial community composition and activity[J]. Geoderma,2017,286:116−124. doi: 10.1016/j.geoderma.2016.10.032
|
[14] |
王利彦,周国娜,朱新玉,高宝嘉,许会道. 凋落物对土壤有机碳与微生物功能多样性的影响[J]. 生态学报,2021,41(7):2709−2718.
Wang LY,Zhou GN,Zhu XY,Gao BJ,Xu HD. Effects of litter on soil organic carbon and microbial functional diversity[J]. Acta Ecologica Sinica,2021,41(7):2709−2718.
|
[15] |
Sun XD,Wang G,Ma QX,Liao JH,Wang D,et al. Organic mulching promotes soil organic carbon accumulation to deep soil layer in an urban plantation forest[J]. For Ecosyst,2021,8(1):2. doi: 10.1186/s40663-020-00278-5
|
[16] |
Canedoli C,Ferrè C,El Khair DA,Padoa-Schioppa E,Comolli R. Soil organic carbon stock in different urban land uses:high stock evidence in urban parks[J]. Urban Ecosyst,2020,23(1):159−171. doi: 10.1007/s11252-019-00901-6
|
[17] |
Chen ZH,Shen Y,Tan B,Li H,You CM,et al. Decreased soil organic carbon under litter input in three subalpine forests[J]. Forests,2021,12(11):1479. doi: 10.3390/f12111479
|
[18] |
Lajtha K,Bowden RD,Crow S,Fekete I,Kotroczó Z,et al. The detrital input and removal treatment (DIRT) network:insights into soil carbon stabilization[J]. Sci Total Environ,2018,640-641:1112−1120. doi: 10.1016/j.scitotenv.2018.05.388
|
[19] |
张磊,贾淑娴,李啸灵,陆宇明,刘小飞,郭剑芬. 凋落物和根系输入对亚热带米槠天然林土壤有机碳组分的影响[J]. 水土保持学报,2021,35(3):244−251.
Zhang L,Jia SX,Li XL,Lu YM,Liu XF,Guo JF. Effects of litter and root inputs on soil organic carbon fractions in a subtropical natural forest of Castanopsis carlesii[J]. Journal of Soil and Water Conservation,2021,35(3):244−251.
|
[20] |
Fanin N,Alavoine G,Bertrand I. Temporal dynamics of litter quality,soil properties and microbial strategies as main drivers of the priming effect[J]. Geoderma,2020,377:114576. doi: 10.1016/j.geoderma.2020.114576
|
[21] |
刘华兵,李谦维,高俊琴,张晓雅,杨梨萍,冯久格. 红碱淖湿地不同水分条件下芦苇群落对土壤有机碳组分和无机氮含量的影响[J]. 环境科学学报,2022,42(1):88−94.
Liu HB,Li QW,Gao JQ,Zhang XY,Yang LP,Feng JG. Effects of Phragmites australis community on soil organic carbon and inorganic nitrogen content under different soil moistures in Hongjiannao wetland[J]. Acta Scientiae Circumstantiae,2022,42(1):88−94.
|
[22] |
田思惠,柳鑫,金宝成,陈玉连,汪依妮,等. 三工河流域琵琶柴群落凋落物对土壤有机碳固定的影响[J]. 生态学报,2019,39(14):5339−5347.
Tian SH,Liu X,Jin BC,Chen YL,Wang YN,et al. Effects of litter on soil organic carbon fixation in Reaumuria soongorica communities in the Sangong River basin[J]. Acta Ecologica Sinica,2019,39(14):5339−5347.
|
[23] |
Li Q,Zhao GY,Cao GM,Zhang XX,Liu ZW. Non-additive effects of leaf litter mixtures from Robinia pseudoacacia and ten tree species on soil properties[J]. J Sustain For,2020,39(8):771−784. doi: 10.1080/10549811.2020.1730905
|
[24] |
Zhang XX,Wang LJ,Zhou WX,Hu W,Hu JW,Hu M. Changes in litter traits induced by vegetation restoration accelerate litter decomposition in Robinia pseudoacacia plantations[J]. Land Degrad Dev,2022,33(1):179−192. doi: 10.1002/ldr.4136
|
[25] |
Blair GJ,Lefroy RDB,Lisle L. Soil carbon fractions based on their degree of oxidation,and the development of a carbon management index for agricultural systems[J]. Aust J Agric Res,1995,46(7):1459−1466. doi: 10.1071/AR9951459
|
[26] |
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000: 14-97.
|
[27] |
关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986: 274-337.
|
[28] |
郭鑫,罗欢,许雪梅,马爱霞,尚振艳,等. 不同品质凋落物分解对黄土高原草地土壤有机碳及其稳定性的影响[J]. 草业学报,2023,32(5):83−93. doi: 10.11686/cyxb2022349
Guo X,Luo H,Xu XM,Ma AX,Shang ZY,et al. Effects of litter decomposition with different qualities on soil organic carbon content and its stability in grassland on the Loess Plateau[J]. Acta Prataculturae Sinica,2023,32(5):83−93. doi: 10.11686/cyxb2022349
|
[29] |
苏卓侠,苏冰倩,上官周平. 植物凋落物分解对土壤有机碳稳定性影响的研究进展[J]. 水土保持研究,2022,29(2):406−413.
Su ZX,Su BQ,Shangguan ZP. Advances in effects of plant litter decomposition on the stability of soil organic carbon[J]. Research of Soil and Water Conservation,2022,29(2):406−413.
|
[30] |
Yan JF,Wang L,Hu Y,Tsang YF,Zhang YN,et al. Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability[J]. Geoderma,2018,319:194−203. doi: 10.1016/j.geoderma.2018.01.009
|
[31] |
陈甜,元方慧,张琳梅,胡亚林. 不同化学性质叶凋落物添加对土壤有机碳矿化及激发效应的影响[J]. 应用生态学报,2022,33(10):2602−2610.
Chen T,Yuan FH,Zhang LM,Hu YL. Effects of addition of leaf litter with different chemical properties on soil organic carbon mineralization and priming effect[J]. Chinese Journal of Applied Ecology,2022,33(10):2602−2610.
|
[32] |
张敏. 刺槐人工林土壤有机碳库变化特征及其微生物驱动机制[D]. 杨凌: 西北农林科技大学, 2022: 56.
|
[33] |
Cotrufo MF,Wallenstein MD,Boot CM,Denef K,Paul E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization:do labile plant inputs form stable soil organic matter?[J]. Global Change Biol,2013,19(4):988−995. doi: 10.1111/gcb.12113
|
[34] |
王清奎,田鹏,孙兆林,赵学超. 森林土壤有机质研究的现状与挑战[J]. 生态学杂志,2020,39(11):3829−3843.
Wang QK,Tian P,Sun ZL,Zhao XC. Research on soil organic matter in forest ecosystems:status and challenge[J]. Chinese Journal of Ecology,2020,39(11):3829−3843.
|
[35] |
渠晨晨,任稳燕,李秀秀,蔡鹏,陈雯莉,黄巧云. 重新认识土壤有机质[J]. 科学通报,2022,67(10):913−923.
Qu CC,Ren WY,Li XX,Cai P,Chen WL,Huang QY. Revisit soil organic matter[J]. Chinese Science Bulletin,2022,67(10):913−923.
|
[36] |
张晓曦,胡嘉伟,胡漫,黄琰莹,王羿人,张蔓. 黄土丘陵区代表性乔灌草植物凋落物关键代谢产物释放的室内模拟研究[J]. 西北植物学报,2023,43(4):688−697.
Zhang XX,Hu JW,Hu M,Huang YY,Wang YR,Zhang M. Indoor simulating research of key plant metabolites release from the litters of typical arboreal,shrubby and herbaceous species in the Loess Hilly Region[J]. Acta Botanica Boreali-Occidentalia Sinica,2023,43(4):688−697.
|
[37] |
张慧玲,吴建平,熊鑫,褚国伟,周国逸,张德强. 南亚热带森林土壤碳库稳定性与碳库管理指数对模拟酸雨的响应[J]. 生态学报,2018,38(2):657−667.
Zhang HL,Wu JP,Xiong X,Zhu GW,Zhou GY,Zhang DQ. Effects of simulated acid rain on soil labile organic carbon and carbon management index in subtropical forests of China[J]. Acta Ecologica Sinica,2018,38(2):657−667.
|
[38] |
张冰冰,万晓华,杨军钱,王涛,黄志群. 不同凋落物质量对杉木人工林土壤微生物群落结构的影响[J]. 土壤学报,2021,58(4):1040−1049.
Zhang BB,Wan XH,Yang JQ,Wang T,Huang ZQ. Effects of litters different in quality on soil microbial community structure in Cunninghamia lanceolata plantation[J]. Acta Pedologica Sinica,2021,58(4):1040−1049.
|
[39] |
薛志婧,屈婷婷,刘春晖,刘小槺,王蕊,等. 培养条件下枯落物分解过程中微生物残体对土壤有机碳形成的贡献[J]. 应用生态学报,2023,34(7):1845−1852.
Xue ZJ,Qu TT,Liu CH,Liu XK,Wang R,et al. Contribution of microbial necromass to soil organic carbon formation during litter decomposition under incubation conditions[J]. Chinese Journal of Applied Ecology,2023,34(7):1845−1852.
|